

Monitoring Event 13 – November 1998 Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine

Volume 1 of 2 Text through Appendix B

Contract No. N62472-92-D-1296 Contract Task Order No. 0047

Prepared for

Department of the Navy
Northern Division
Naval Facilities Engineering Command
10 Industrial Highway
Mail Stop No. 82
Lester, Pennsylvania 19113-2090

Prepared by

EA Engineering, Science, and Technology
The Maple Building
3 Washington Center
Newburgh, New York 12550

Monitoring Event 13 - November 1998 Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine

Volume 1 of 2 Text through Appendix B

Contract No. N62472-92-D-1296 Contract Task Order No. 0047

Prepared for

Department of the Navy
Northern Division
Naval Facilities Engineering Command
10 Industrial Highway
Mail Stop No. 82
Lester, Pennsylvania 19113-2090

Peter Municy	MARCH 16 1999
Peter L. Nimmer, P.G.	Date
CTO Manager R. Lum	8 Mar 99
Charles R. Flynn, Jr., Ph. Charles R. Flynn, Jr.	Date
Program Manager Program Manager Program Manager Program Manager PAUL A MANAGEMENT OF MANAGEMENT	
- all was the	March 15 1999
Paul W. Higgins, G. Higgins	Maul, 15 1999 Date
Paul W. Higgins, EG. HIGGINS Maine Certified Geologist CERTIFIED CERTIFIED March 1999	_
March 1999	

QUALITY REVIEW STATEMENT

Contract No. N62472-92-D-1296

EA Project No.: 29600.47.7593

Contract Task Order No. 0047

Activity: Naval Air Station, Brunswick, Maine

Description of Report/Deliverable:

Monitoring Event 13 – November 1998, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine

EA CTO Manager: Peter L. Nimmer, P.G.

In compliance with EA's Quality Procedures for review of deliverables outlined in the Quality Management Plan, this final deliverable has been reviewed for quality by the undersigned Senior Technical Reviewer(s). The information presented in this report/deliverable has been prepared in accordance with the approved Implementation Plan for the Contract Task Order (CTO) and reflects a proper presentation of the data and/or the conclusions drawn and/or the analyses or design completed during the conduct of the work. This statement is based upon the standards identified in the CTO and/or the standard of care existing at the time of preparation.

Senior Technical Reviewer

James A. Shultz, C.P.G. Senior Geologist

(Date)

CONTENTS

					<u>Page</u>
LIS	T O	F FIGU	JRES		• •
LIS	T O	F TAB	LES		
		•			
1.	PRO	DJECT	ACTIVI	TIES AND MONITORING EVENT RESULTS	1
-	1 1	Introd	luction		1
				of Water Level Elevations	
.,.	1.2	Micas	ui cilicite (y vater Lever Elevations	
	٠	1.2.1	Field Ac	ctivities	3
		1.2.2	Results.		3
	1.3	Grou	nd-Water	Monitoring, Sampling, and Analysis	5
		121	Eigld A	ctivities	5
		1.3.1	Woter C	Quality Indicator Parameter Measurements	5 5
		1.3.2	Water C	Quality Results	6
		1.3.3	water Q	Zudiffy Results	
			1.3.3.1	Sites 1 and 3	6
			1.3.3.2	Eastern Plume	
			1.3.3.3	Surface Water and Leachate Seeps	7
			1.3.3.4	Ground-Water Extraction and Treatment System	7
		134	Ground-	-Water Analytical Program	7
				-Water Sampling Results	
			1.3.5.1	Sites 1 and 3	8
			1.3.5.2	Eastern Plume	
			1.3.5.3	Total Volatile Organic Compound Isoconcentration Maps	8
			1.3.5.4	Perimeter Monitoring Wells	
			1.3.5.5	Ground-Water Extraction and Treatment System	9
	1.4	Surfa	ce Water	and Seep Sampling and Analysis	10
		1.4.1	Samplin	ng Activities	10
		1.4.2	Laborate	ory Results	10
				•	
			1.4.2.1	Surface Water	10
			1.4.2.2	Leachate Station Seep Samples	10
			1.4.2.3	Leachate Station Sediment Samples	10

	Page
1.5 Landfill Gas Monitoring and Cap Inspection	11
1.5.1 Monitoring and Inspection Activities	11
1.5.2 Landfill Gas Monitoring Results	11
1.6 Quality Assurance/Quality Control	11
1.7 Analytical Data Quality Review	11
REFERENCES	
APPENDIX A: FIELD MONITORING AND SAMPLING FORMS	
APPENDIX B: ANALYTICAL DATA QUALITY REVIEW	
APPENDIX C: ANALYTICAL REPORT DATA TABLES (VOLUME 2)	

LIST OF FIGURES

Number	<u>Title</u>
1	Site location map, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
2	Long-term monitoring network, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
3	Long-term monitoring gauging locations, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
4	Long-term monitoring sampling points, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
5	Interpreted shallow ground-water potentiometric surface contour map, 1 September 1998, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
6	Interpreted shallow ground-water potentiometric surface contour map, 3 November 1998, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
7	Extraction well detail map, 3 November 1998, shallow potentiometric surface.
. 8.	Interpreted deep ground-water potentiometric surface contour map, 1 September 1998, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
9	Extraction well detail map, 1 September 1998, deep potentiometric surface.
10	Interpreted deep ground-water potentiometric surface contour map, 3 November 1998, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
11	Extraction well detail map, 3 November 1998, deep potentiometric surface.
12	Water elevations within Sites 1 and 3 landfill, shallow and deep wells.
13	Interpreted total VOC contour map, shallow wells, Monitoring Event 13, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
14	Interpreted total VOC contour map, deep wells, Monitoring Event 13, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.

List of Tables March 1999

LIST OF TABLES

<u>Number</u>	<u>Title</u>
1	Summary of long-term monitoring program at Sites 1 and 3, Naval Air Station, Brunswick, Maine.
2	Summary of long-term monitoring program at Eastern Plume, Naval Air Station, Brunswick, Maine.
3	Monitoring well gauging summary, Sites 1 and 3, Naval Air Station, Brunswick, Maine.
4	Monitoring well gauging summary, Eastern Plume, Naval Air Station, Brunswick, Maine.
5	Ground-water extraction flow rate and run time summary, August-November 1998, Ground-Water Extraction and Treatment System (Building 50), Naval Air Station, Brunswick, Maine.
6	Summary of water quality indicator parameters measured in ground-water samples collected on 4 and 12 November 1998 at Sites 1 and 3, Naval Air Station, Brunswick, Maine.
7	Summary of water quality indicator parameters measured in ground-water samples collected on 9-12 November 1998 at Eastern Plume, Naval Air Station, Brunswick, Maine.
8	Summary of water quality indicator parameters measured in surface water and seep samples collected on 5 November 1998 at Sites 1 and 3, Naval Air Station, Brunswick, Maine.
9	Summary of water quality indicator parameters measured in surface water collected on 5 November 1998 at Eastern Plume, Naval Air Station, Brunswick, Maine.
10	Summary of water quality indicator parameters measured in water samples collected from extractions wells and the treatment plant on 9 November 1998 at Eastern Plume, Naval Air Station, Brunswick, Maine.
11	Summary of analytical results for ground-water samples collected on 4 and 12 November 1998 at Sites 1 and 3, Naval Air Station, Brunswick, Maine.

Number	<u>Title</u>
12	Summary of analytical results for ground-water samples collected on 9-12 November 1998 at Eastern Plume, Naval Air Station, Brunswick, Maine.
13	Analytical results for direct-push sampling conducted on 15, 16, and 28 October 1998, Naval Air Station, Brunswick, Maine
14	Summary of analytical results for water samples collected on 9 November 1998 from the ground-water extraction wells and treatment system, Naval Air Station, Brunswick, Maine.
15	Summary of analytical results for surface water samples collected on 5 November 1998 at Sites 1 and 3, Naval Air Station, Brunswick, Maine.
16	Summary of analytical results for surface water samples collected on 5 November 1998 at Eastern Plume, Naval Air Station, Brunswick, Maine.
17	Summary of analytical results for leachate station seep samples collected on 5 November 1998 at Sites 1 and 3, Naval Air Station, Brunswick, Maine.
18	Summary of analytical results for leachate station sediment samples collected on 5 November 1998 at Sites 1 and 3, Naval Air Station, Brunswick, Maine.
19	Summary of landfill gas monitoring conducted on 24 November 1998 at Sites 1 and 3, Naval Air Station, Brunswick, Maine.
20	Summary of analytical data quality review.

March 1999

1. PROJECT ACTIVITIES AND MONITORING EVENT RESULTS

1.1 INTRODUCTION

Under Contract No. N62472-92-D-1296, Contract Task Order No. 0047, Northern Division, Naval Facilities Engineering Command contracted with EA Engineering, Science, and Technology to perform long-term monitoring at Sites 1 and 3 and Eastern Plume at Naval Air Station (NAS), Brunswick, Maine. NAS Brunswick is located south of the Androscoggin River between Brunswick and Bath, Maine, and the locations of Sites 1 and 3 and the Eastern Plume are provided on Figure 1.

At Sites 1 and 3 and the Eastern Plume, the Navy is performing long-term monitoring, maintenance, and corrective measures as part of the long-term remedial actions required by the Record of Decision for a Remedial Action dated June 1992 for Sites 1 and 3 (ABB-ES 1992a) and the Record of Decision Interim Remedial Action dated June 1992 for the Eastern Plume (ABB-ES 1992b). A Long-Term Monitoring Plan (LTMP) was established pursuant to these Records of Decision (ABB-ES 1994). A draft revision to the LTMP has been issued (EA 1998), and is scheduled to be finalized in 1999. The Draft LTMP document establishes the monitoring and sampling requirements for Sites 1 and 3 and the Eastern Plume.

Remedial actions at Sites 1 and 3 included construction of a low permeability slurry wall upgradient and surrounding two disposal trenches to a depth of approximately 90 ft, construction of a low permeability cap atop the landfill, and placement of 2 ground-water extraction wells within the landfill limits. Extraction wells within the landfill limits (EW-6 and EW-7) were deactivated on 19 November 1997 due to continually decreasing yields and stabilized water levels within the confines of the slurry wall. The source of the Eastern Plume has been identified as Sites 4, 11, and 13 (ABB-ES 1992b). Ground water in the Eastern Plume is being remediated by a treatment system consisting of 6 ground-water extraction wells designed to provide hydraulic control of the aquifer, and a treatment plant to remove volatile organic compounds (VOC) from the ground water prior to discharge. The extraction system has been operational since April 1995. Extraction well EW-2A, located within the Eastern Plume in the vicinity of monitoring well MW-311, was activated on 12 June 1998 to provide additional hydraulic control in this area.

During completion of the Draft LTMP (EA 1998) for Sites 1 and 3 and the Eastern Plume, reported concentrations were reviewed from previous monitoring events. With the concurrence of Maine Department of Environmental Protection, U.S. Environmental Protection Agency (EPA), and Restoration Advisory Board members, the sampling points have been revised. At Sites 1 and 3, 14 monitoring wells inside the confines of the landfill slurry wall and cap are no longer sampled. One new shallow monitoring well (MW-240) was added to the sampling program effective November 1998. Gauging will continue for wells inside the landfill under the Draft LTMP. Figure 2 shows the gauging and sampling points of the long-term monitoring network; Figure 3 shows long-term monitoring locations where gauging is conducted; and

Page 2 March 1999

Figure 4 shows points where long-term monitoring samples are collected, as specified in the Draft LTMP (EA 1998). The sampling and gauging points at Sites 1 and 3 and the Eastern Plume are summarized in Tables 1 and 2, respectively.

Beginning with Monitoring Event 13, changes were made to the long-term monitoring network. One leachate sample location (SEEP-2) has been consistently dry and, therefore, was dropped from the sampling program. This seep location will continue to be checked and will be sampled if flowing, however, this sampling location has not been formally retained in the Long-Term Monitoring Program. Three surface water samples in the vicinity of the landfill (SW-01 through SW-03) and two surface water locations (SW-05 and SW-06) downstream were removed, and two locations further downstream were added (SW-08 and SW-09) to monitor for VOC in surface water. Two surface water locations were added upstream of the Sites 1 and 3 landfill for inorganic analysis only (SW-15 and SW-16) to monitor for upstream inorganic concentrations. These samples are currently sampled under another program, and will be sampled as part of the LTMP if they are no longer sampled as part of the currently established program. Stream sediment sampling was reduced, and will be conducted at a semi-annual frequency to be specified in the Final LTMP. Additional stream samples may be included in future monitoring events to address nearby Site 2, located across Mere Brook from Sites 1 and 3 (Figure 2).

Within the Eastern Plume, several shallow and deep monitoring wells exhibited consistent non-detections of VOC since 1995, and will no longer be sampled under the Long-Term Monitoring Program. Five additional monitoring wells (MW-330 through MW-334) were installed and added to the monitoring program effective November 1998, including 1 new shallow monitoring well (MW-332) installed near MW-311, 2 deep wells (MW-330 and MW-331) installed to investigate the connection between the northern and southern lobes of the Eastern Plume, and 2 deep wells installed as additional sentinel wells on the NAS Brunswick property south of Mere Brook (MW-333 and MW-334).

Piezometers P-111 and P-132 were sampled as part of Monitoring Event 13 to increase data coverage, based on the Draft LTMP.

Five surface water samples were added to the Long-Term Monitoring Program to assess whether the Eastern Plume is impacting surface water. Three surface water sampling locations were added to Mere Brook (SW-10, SW-11, and SW-12). Two surface water sampling locations were added to Merriconeag Stream (SW-13 and SW-14).

Although not required by the Draft LTMP, concurrent with Monitoring Event 13, a direct-push sampling program was completed in the vicinity of MW-311 to further define ground-water impacts in this area. Seven direct-push locations were sampled for ground water (DP-EP-01 through DP-EP-07). Complete results of the direct-push sampling and details regarding newly installed monitoring wells in Sites 1 and 3 and the Eastern Plume are summarized in a separate letter report (EA 1999). Sampling and gauging at Sites 1 and 3 and the Eastern Plume will be reduced from tri-annual sampling to bi-annual sampling beginning with Monitoring Event 14 (April 1999).

March 1999

This report provides the results for the November 1998 monitoring/sampling event (Monitoring Event 13). Appendix A provides field monitoring and sampling forms, Appendix B provides an analytical data quality review, and Appendix C provides analytical report data tables.

Bi-monthly water level gauging data collected during September 1998 are also presented in this report. Temporal trends and other observations based on data collected during long-term monitoring will be presented in the Annual Report for 1998.

1.2 MEASUREMENT OF WATER LEVEL ELEVATIONS

1.2.1 Field Activities

Water level measurements were obtained during Monitoring Event 13 on 3 November 1998 at the wells, piezometers, and surface water gauging locations indicated in Tables 1 and 2 for Sites 1 and 3 and Eastern Plume, respectively. Although not required by the Draft LTMP, bi-monthly water level data were collected on 1 September 1998 from Sites 1 and 3 and Eastern Plume monitoring wells, piezometers, and extraction wells. These additional bi-monthly water level data were collected to identify seasonality or significant variation in ground-water flow direction with time.

Figure 3 provides the locations of ground-water monitoring wells, piezometers, extraction wells. surface water gauging stations, and other sampling points at Sites 1 and 3 and Eastern Plume. Sampling and gauging procedures are detailed in the final report for Monitoring Event 4 (EA 1996) and in the Draft LTMP (EA 1998).

A total of 0.31 in. of precipitation was noted 1 week before and during the September 1998 gauging period, and 0.66 in. of precipitation was noted 1 week before or during the November gauging period.

1.2.2 Results

Calculated ground-water elevation data are provided in Tables 3 and 4 for Sites 1 and 3 and the Eastern Plume, respectively. Daily pumping rates for each extraction well for the period 1 August through 30 November 1998 are provided in Table 5. During the well gauging conducted as part of Monitoring Event 13, the following exceptions to the Draft LTMP were noted:

- Water level measurements could not be obtained in the following dry wells or piezometers: MW-202B, P-110, and P-124.
- One offsite piezometer (P-123) had a blocked casing and could not be gauged. Attempts to clear this piezometer have been unsuccessful.

Page 4 March 1999

One Sites 1 and 3 well (MW-240) and 5 Eastern Plume wells (MW-330 through MW-334) were installed October 1998. These wells were gauged starting in November 1998.

Shallow and deep potentiometric surface contour maps were prepared based on the water level data collected on 1 September and 3 November 1998. The shallow potentiometric surface contour maps contain data for wells and piezometers screened in the upper stratified silt/sand unit, while the deep potentiometric surface contour maps contain data for wells and piezometers screened in the lower coarse sand unit. The shallow interval is unconfined, while the deep interval is considered semi-confined due to the presence of the transition unit above and the Presumscot Clay formation below. The distinction between shallow and deep potentiometric surfaces was made to reflect differences in potentiometric head observed at depth in wells located across Sites 1 and 3 and the Eastern Plume, and to assess differing flow patterns which may be present in shallow and deep intervals. The interpreted ground-water flow direction for the 1 September and 3 November 1998 gauging events is shown on Figures 5 through 7, respectively, for the shallow portions of the aquifer, and Figures 8 through 11 for the deep portions of the aquifer.

Note that wells MW-210A, MW-210R, and MW-211A, located at Sites 1 and 3, are screened in bedrock at significantly lower depths than deep overburden wells. Consistent with previous monitoring events, the measured water elevations at these bedrock wells showed differing water elevations compared to nearby wells screened in the deep overburden and, therefore, the data for these bedrock wells were not used in the development of overburden potentiometric surface contour maps.

At Sites 1 and 3, a comparison of water elevation data collected during long-term monitoring indicates water elevations have decreased in the vicinity of the slurry wall due to active pumping and placement of the slurry wall and landfill cap (Figure 12). The deepest known elevation of the bottom of waste material at Sites 1 and 3 has been reported to be 32.9 ft mean sea level, as noted at well MW-234R. The depth of ground water during September and November 1998 at monitoring well MW-234R was 33.35 and 33.25 ft mean sea level, which is approximately 0.4 ft below the top of the waste material.

Observations regarding well conditions were made during the well gauging program, and notable observations at the Sites 1 and 3 include: repairs required at monitoring well MW-217A (separated extension approximately 10 ft below the top of casing) and monitoring well MW-217B (pump cord shortened). At the Eastern Plume, two artesian wells (MW-207A and MW-309A) and one monitoring well (MW-309A) require new outer steel casing. These well repairs are not expected to affect water level gauging or ground-water sample results. Repairs have been scheduled to occur during Spring 1999. The monitoring locations are secured with locks and monitoring points are labeled.

March 1999

1.3 GROUND-WATER MONITORING, SAMPLING, AND ANALYSIS

1.3.1 Field Activities

The ground-water sampling program was performed during the period of 4 and 9-12 November 1998 at Sites 1 and 3 and Eastern Plume. Dedicated Grundfos Redi-Flo2 stainless steel and Teflon® submersible pumping systems were utilized at a majority of the wells to permit sampling using the low flow sampling technique with the exception of 5 wells/piezometers located in the Eastern Plume which were sampled using a peristaltic pump (MW-105A, MW-330, MW-333, P-106, and P-111).

Ground-water samples were collected from the 8 monitoring wells specified in the Draft LTMP for Sites 1 and 3 (EA 1998). At the Eastern Plume site, ground-water samples were collected from 28 of 28 wells and piezometers, and 5 of 6 extraction wells specified in the Draft LTMP. Extraction well EW-4 was offline for maintenance, and it was not sampled as part of Monitoring Event 13.

Tables 1 and 2 provide summaries of the wells/piezometers gauged and sampled as part of the long-term monitoring program. A detailed description of sample collection methods is provided in the final report for Monitoring Event 4 (EA 1996).

1.3.2 Water Quality Indicator Parameter Measurements

Water quality indicator parameters, including pH, conductivity, temperature, dissolved oxygen, and turbidity, were monitored to ensure stabilization of water quality prior to sample collection. Stabilization of water quality indicator parameters was considered achieved when measurements agreed to within 10 percent on three successive readings and turbidity was below 10 nephelometric turbidity units (NTU). Although not required by the Draft LTMP, oxidation-reduction potential (Eh) was recorded for informational purposes to assess geochemical conditions.

At Sites 1 and 3, 7 of 8 monitoring wells reached equilibrium of the water quality indicator parameters during well purging. Monitoring well MW-217B had 2 water quality parameters (dissolved oxygen and turbidity) which did not stabilize to within 10 percent on three successive readings. This is consistent with past sampling events. Four wells had turbidity in excess of 10 NTU, however, it should be noted at well MW-202A that there was a malfunction with the turbidity probe on the YSI water quality meter. Water was visibly clear at the time of sampling, although high turbidity was recorded. The turbidity probe was replaced and there were no further equipment problems. These elevated turbidity measurements are not likely to impact sample quality.

At the Eastern Plume site, 27 of 28 wells/piezometers reached equilibrium of the water quality indicator parameters during well purging. Piezometer P-111 was reported to have minimal water present in the well, and only one set of water quality parameters could be recorded. Five of the

28 wells/piezometers sampled reached equilibrium but had turbidity measurements in excess of 10 NTU. These elevated turbidity measurements are not expected to impact sample quality.

1.3.3 Water Quality Results

Results of water quality indicator parameter monitoring at the time samples were collected are summarized in Tables 6 and 7 for ground-water samples collected at Sites 1 and 3 and the Eastern Plume, respectively. Tables 8 and 9 provide a summary of the water quality indicator parameter measurements taken in surface water and seep samples collected at Sites 1 and 3 and Eastern Plume, respectively. Water quality indicator parameters measured in water samples collected from extraction wells and treatment plant combined influent and treated effluent samples are summarized in Table 10. The Field Record of Well Gauging, Purging, and Sampling forms, and Field Record of Surface Water/Sediment Sampling forms are provided in Appendix A.

Notable results of water quality indicator parameter measurements are described below for informational purposes, although sample data quality is not expected to be adversely impacted.

1.3.3.1 Sites 1 and 3

- Three of 8 wells reported turbidity in excess of 10 NTU (MW-217B [211 NTU], MW-218 [18 NTU], and MW-219 [39 NTU]).
- An elevated level of conductivity was measured at MW-217B compared to other wells at Sites 1 and 3. This well is located within the Sites 1 and 3 landfill, and elevated conductivity results are consistent with previous sampling of this well.
- Elevated dissolved oxygen concentrations approaching saturation (>9.0 mg/L) were noted in 2 wells at Sites 1 and 3: MW-204 (11.08 mg/L) and MW-240 (9.50 mg/L).
- Reduced dissolved oxygen concentrations (<2.0 mg/L) were noted in 3 monitoring wells at Sites 1 and 3 (MW-202A [1.93 mg/L], MW-217B [1.98 mg/L], and MW-218 [0.88 mg/L]).
- Monitoring well MW-217B had two water quality parameters (turbidity and dissolved oxygen) which did not stabilize to within 10 percent on three successive readings.

1.3.3.2 Eastern Plume

• Turbidity values below 10 NTU were recorded at 20 of 28 monitoring wells and piezometers sampled. Turbidity values stabilized at other locations prior to sample collection, with the exception of P-111 which contained minimal water.

• Elevated dissolved oxygen concentrations approaching saturation (>9.0 mg/L) were noted in 6 wells at the Eastern Plume: MW-105A (11.27 mg/L), MW-224 (11.19 mg/L), MW-231A (9.62 mg/L), MW-231B (10.91 mg/L), MW-306 (10.50 mg/L), and P-132 (10.79 mg/L). All but 2 of these wells (MW-105A and MW-224) are screened within the unconfined upper stratified sand/silt transition unit; all of the wells are located along the western or southern boundaries of the Eastern Plume.

• Reduced dissolved oxygen concentrations (<2.0 mg/L) were noted in 11 monitoring wells).

1.3.3.3 Surface Water and Leachate Seeps

Notable results of water quality indicator parameters include:

- Dissolved oxygen concentrations approaching saturation (>9.0 mg/L) were noted in surface water samples collected at Sites 1 and 3 and Eastern Plume.
- One leachate seep (SEEP-02) was dry, therefore, water quality parameters could not be measured.
- Surface water samples from SW-15 and SW-16 were collected under a separate program. Water quality parameters were not measured.

1.3.3.4 Ground-Water Extraction and Treatment System

Notable results of water quality indicator parameters measured include:

- Elevated dissolved oxygen concentrations were recorded in the combined effluent, which is likely attributable to aeration and mixing, and the addition of hydrogen peroxide in the ultraviolet/peroxidation system, located immediately upstream of the effluent sample port.
- Elevated turbidity was reported at extraction well EW-3. It has been determined that EW-3 has formation material entering the well through the well screen and screen integrity will be assessed in 1999. This well will remain offline or will be repaired.

1.3.4 Ground-Water Analytical Program

Ground-water samples collected from Sites 1 and 3 and the Eastern Plume were submitted for analysis of Target Compound List (TCL) VOC by EPA Method 8260. Ground-water samples collected from Sites 1 and 3 were further analyzed for Target Analyte List (TAL) elements, including metals by inductively coupled plasma (EPA Method 6010), graphite furnace (EPA Method 7000 Series), and mercury by cold vapor atomic adsorption (EPA Method 7470).

Chromium was analyzed by inductively coupled plasma (EPA Method 6010) as specified in the Draft LTMP; the precision and accuracy objectives and reporting requirements identified in the Draft LTMP were met.

1.3.5 Ground-Water Sampling Results

1.3.5.1 Sites 1 and 3

Table 11 provides a summary of the analytical results for the ground-water samples collected at Sites 1 and 3. Summary tables (Form I documents) for the analyses performed are provided in Appendix C.

1.3.5.2 Eastern Plume

Table 12 summarizes the analytical results for the ground-water samples collected at the Eastern Plume. The summary tables (Form Is) for these analyses are provided in Appendix C.

A direct-push sampling program was conducted during Monitoring Event 13. Analytical results are summarized in Table 13. Notable results of the ground-water sampling program include the following:

- There were no VOC reported above State MEG or Federal MCL in 5 ground-water samples collected from the sample stations DP-EP-01 through DP-EP-04. These stations are located south of MW-311 near newly installed sentinel wells MW-333 and MW-334.
- Concentrations of VOC were reported above the State MEG or Federal MCL in ground-water samples collected from 3 direct-push sample stations (DP-EP-05 through DP-EP-07) located in the vicinity of MW-311. The VOC concentrations were reported in samples collected from the deep coarse-grained sand strata within which MW-311 is screened.
- One VOC, methylene chloride, was reported in the ground-water samples and the associated rinsate blank. Methylene chloride is inferred to be a laboratory artifact and is considered to be a false-positive.

1.3.5.3 Total Volatile Organic Compound Isoconcentration Maps

A review of total VOC concentration isocontours for wells screened in the unconfined shallow interval (upper transition unit) at Sites 1 and 3 and the Eastern Plume (Figure 13) indicates that VOC concentrations above corresponding State MEG and/or Federal MCL were detected in one area within the Sites 1 and 3 landfill in the vicinity of MW-217B, and in one area within Eastern Plume in the vicinity of MW-332.

March 1999

A review of total VOC concentration isocontours for wells screened within the deep interval (semi-confined coarse sand unit) shown on Figure 14 indicates that two areas of the Eastern Plume reported VOC concentrations above corresponding State MEG and Federal MCL. The first area in the Eastern Plume extends from MW-NASB-212 in the northeastern portion of the Eastern Plume towards MW-308. The second area in the Eastern Plume extends from EW-3 southeast toward MW-311 and south toward MW-229A.

1.3.5.4 Perimeter Monitoring Wells

A network of perimeter monitoring wells is present near the property boundary of NAS Brunswick in the vicinity of Sites 1 and 3 and Eastern Plume. Perimeter monitoring wells at Sites 1 and 3 and the Eastern Plume include: MW-231A, MW-231B, MW-240, MW-332, MW-333, MW-334, MW-318, MW-313, MW-218, MW-309B, and MW-305. A full discussion of VOC detections at perimeter monitoring wells will be included in the 1998 Annual Report.

Notable results of perimeter well sampling include:

- The majority of overburden perimeter monitoring wells (MW-231A, MW-231B, MW-305, MW-318, and MW-334) and one perimeter bedrock well (MW-309B) reported no concentrations of VOC other than laboratory artifacts.
- One deep perimeter monitoring well at Sites 1 and 3 (MW-218) reported an elevated concentration of arsenic above Federal MCL.
- One deep perimeter monitoring well (MW-333) reported one VOC
 (1,1-dichloroethane) at 1 μg/L, which is below the MEG (70 μg/L; no MCL).
- One shallow perimeter monitoring well located in the southeast portion of the Eastern Plume (MW-332) reported concentrations of 2 VOC above corresponding State MEG or Federal MCL.

1.3.5.5 Ground-Water Extraction and Treatment System

Table 14 provides a summary of the VOC and target analytes reported in ground-water extraction well, treatment system influent, and treatment system combined effluent samples collected at the ground-water extraction and treatment system. Laboratory data (Form I documents) are provided in Appendix C.

There were no exceedances of the ground-water treatment plant discharge limits for VOC reported in the combined effluent sample.

Page 10 March 1999

1.4 SURFACE WATER AND SEEP SAMPLING AND ANALYSIS

1.4.1 Sampling Activities

The surface water, leachate seep, and leachate seep sediment samples at Sites 1 and 3 and surface water samples at Eastern Plume were collected on 5 November 1998, in accordance with the general methodologies established in the Draft LTMP (EA 1998).

Surface water, leachate station seep, and seep sediment samples were collected for analysis of TCL VOC by EPA Method 8260. Selected surface water samples at Sites 1 and 3 were additionally analyzed for TAL elements, including metals by inductively coupled plasma (EPA Method 6010), graphite furnace (EPA Method 7000 series), and mercury by cold vapor atomic adsorption (EPA Method 7470). Chromium was analyzed by inductively coupled plasma (EPA Method 6010). The precision and accuracy objectives and reporting requirements identified in the Draft LTMP were met.

1.4.2 Laboratory Results

1.4.2.1 Surface Water

Sites 1 and 3

Table 15 provides a summary of the VOC and TAL reported in surface water samples collected at Sites 1 and 3. The reports of laboratory analyses (Form I documents) for the surface water samples are provided in Appendix C.

Eastern Plume

Table 16 provides a summary of the constituents reported in surface water samples collected at the Eastern Plume. The reports of laboratory analyses (Form I documents) for surface water samples are provided in Appendix C.

1.4.2.2 Leachate Station Seep Samples

Table 17 provides a summary of the constituents reported in leachate station seep samples collected at Sites 1 and 3. The analytical reports for leachate analyses (Form Is) are provided in Appendix C.

1.4.2.3 Leachate Station Sediment Samples

Table 18 provides a summary of the constituents reported in the 5 leachate station sediment samples collected at Sites 1 and 3. Reports of laboratory analyses (Form Is) are provided in Appendix C.

Page 11 March 1999

1.5 LANDFILL GAS MONITORING AND CAP INSPECTION

1.5.1 Monitoring and Inspection Activities

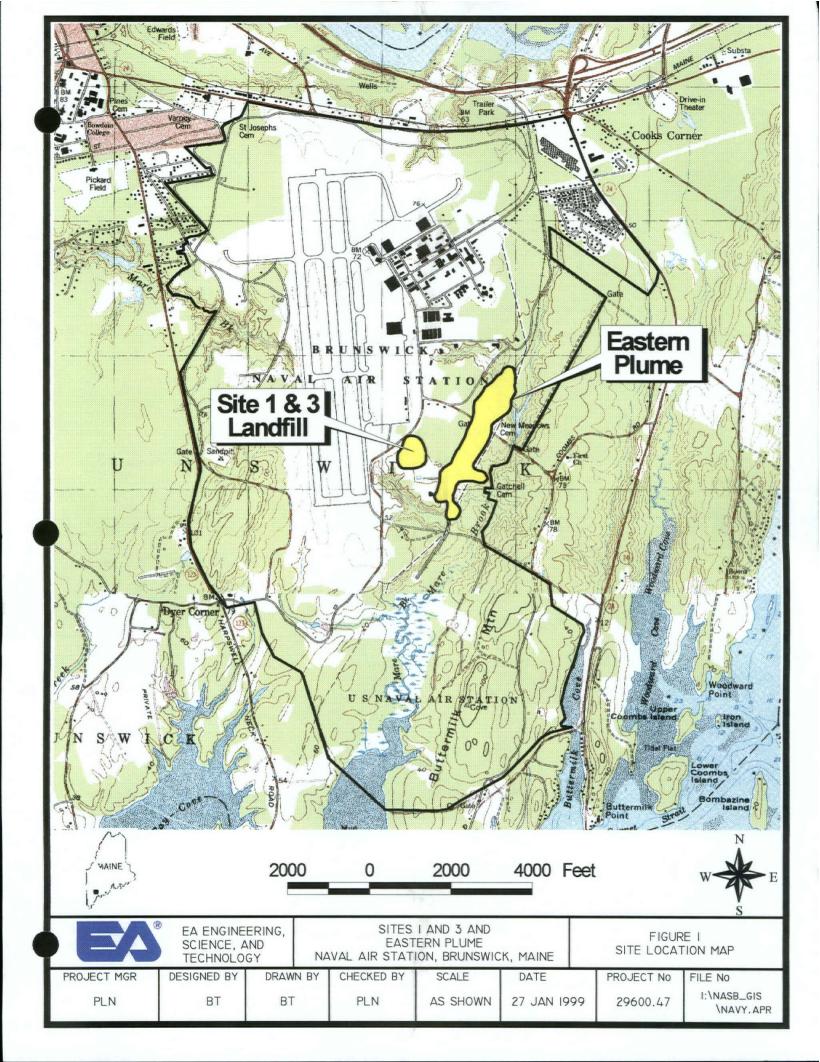
Gas probe monitoring was conducted at Sites 1 and 3 on 24 November 1998 to monitor and identify subsurface gas migration, as specified in the Draft LTMP (EA 1998). Landfill gas monitoring procedures were performed in accordance with the Draft LTMP (EA 1998) and the final report for Monitoring Event 4 (EA 1996). Gas measurements were taken at each of the 3 gas probes (GP-04 through GP-06) located along the north and west side of the Weapons Compound and at each of the 14 gas vents (GV-01 through GV-14) located along the north and west sides of the landfill. The gas probe casings were observed to be in good repair and locked, and appeared to be in good condition. Two gas vents (GV-01 and GV-14) were observed to have been completed with plastic impact barriers, although these vents are located in areas away from potential vehicular traffic.

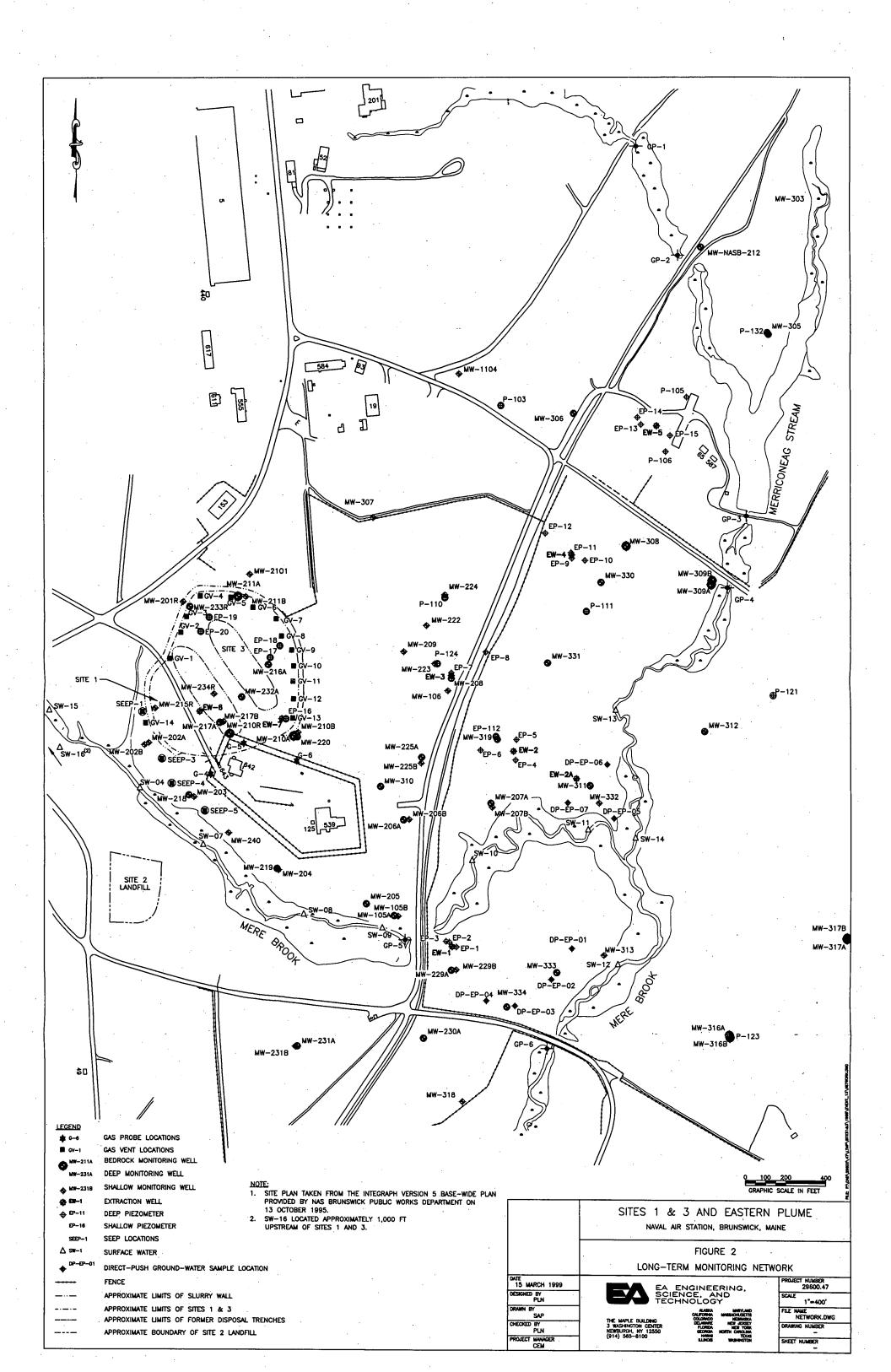
The engineering inspection of the landfill cap and appurtenances noted the presence of erosion, and corrective measures have been completed to repair the areas of erosion noted in previous sampling events and to prevent further erosion. Completion of necessary repairs to the landfill cap and drainage system, including the drainage along the eastern border and the western drainage swale, is scheduled to be conducted in the Spring of 1999 and will be summarized separately following completion.

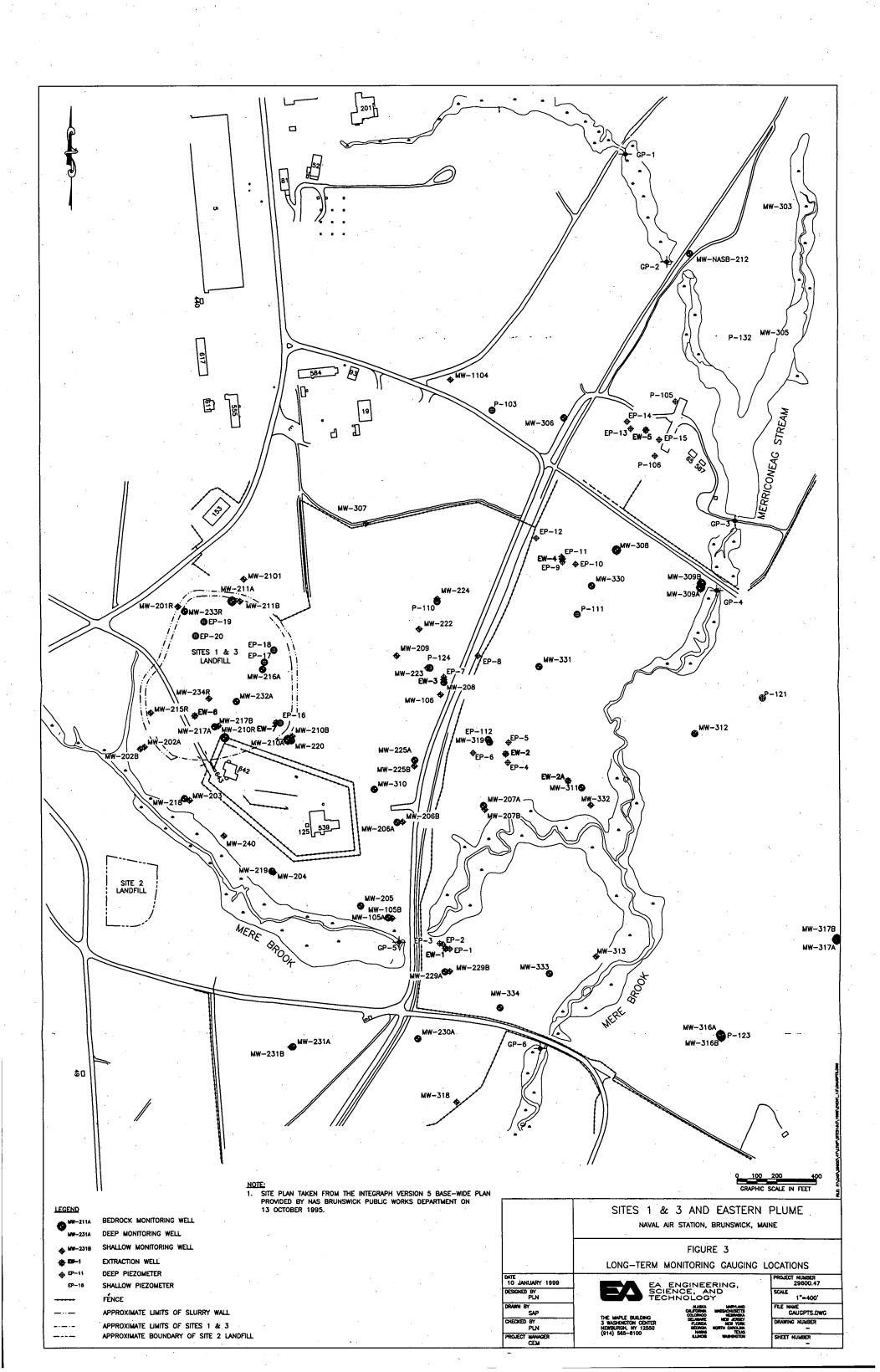
1.5.2 Landfill Gas Monitoring Results

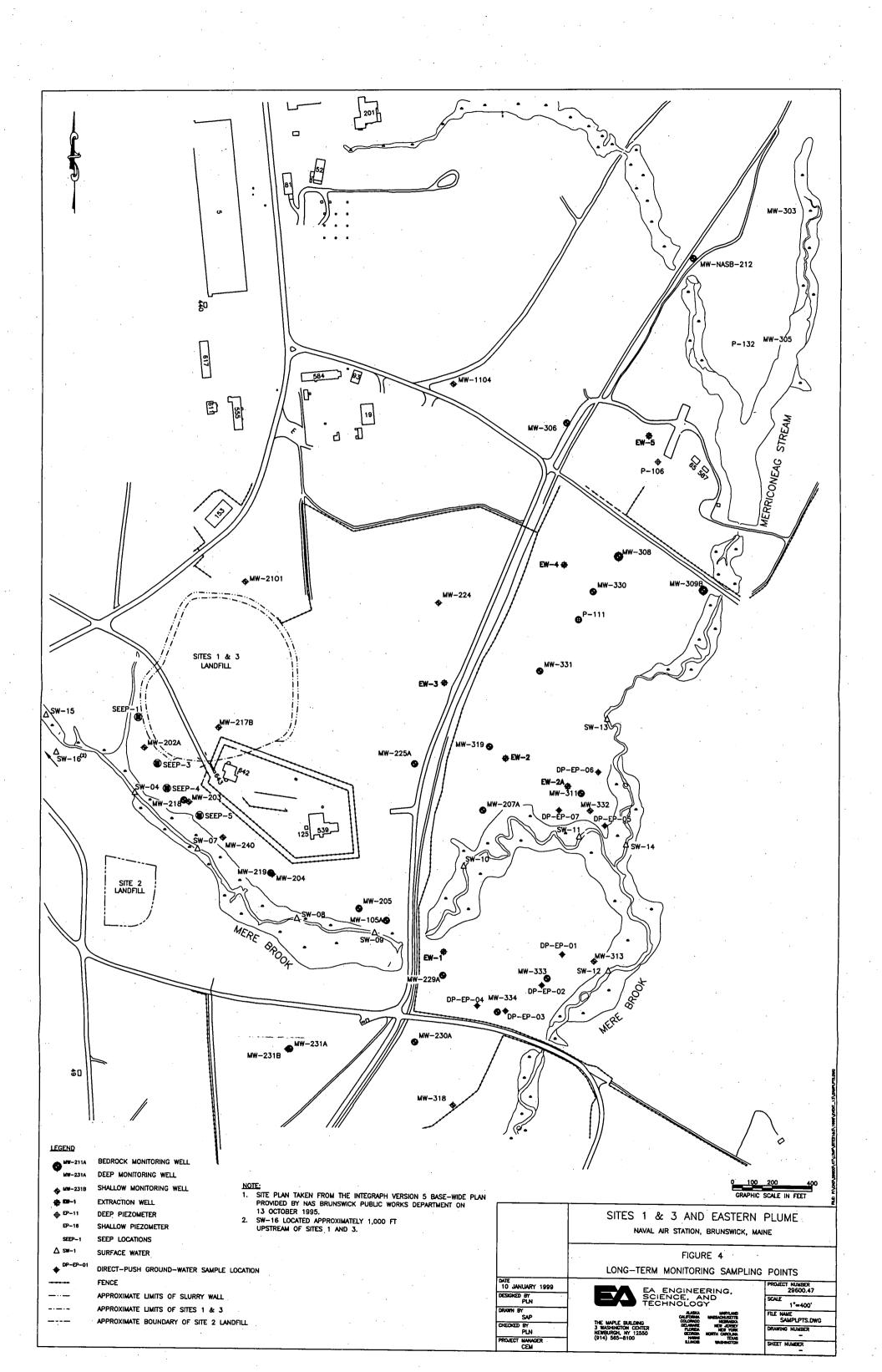
Table 19 provides a summary of landfill gas monitoring conducted at the gas probes and gas vents located at Sites 1 and 3. Sample data were noted both in field logbooks and on the field record forms provided in Appendix A.

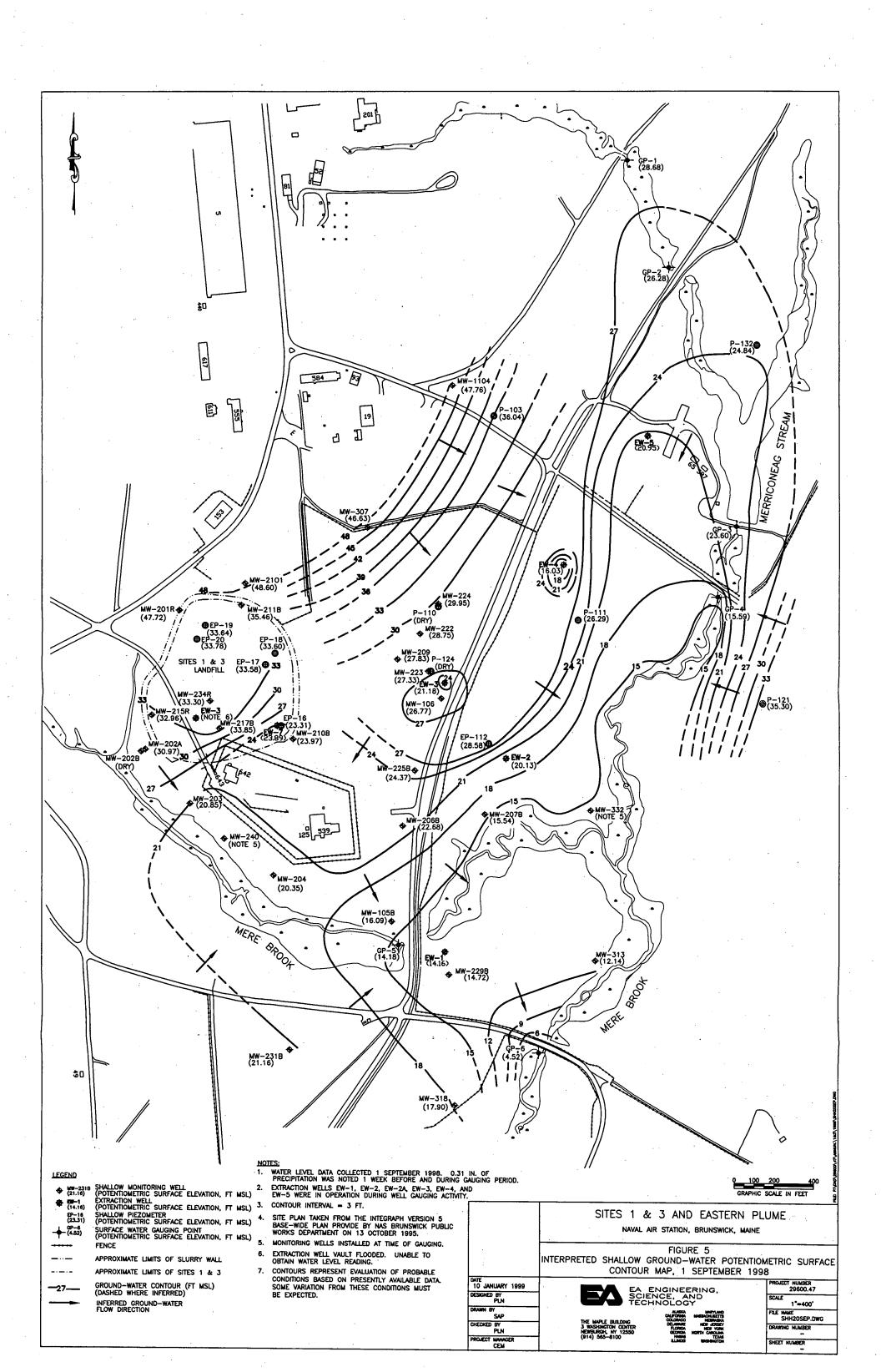
1.6 QUALITY ASSURANCE/QUALITY CONTROL

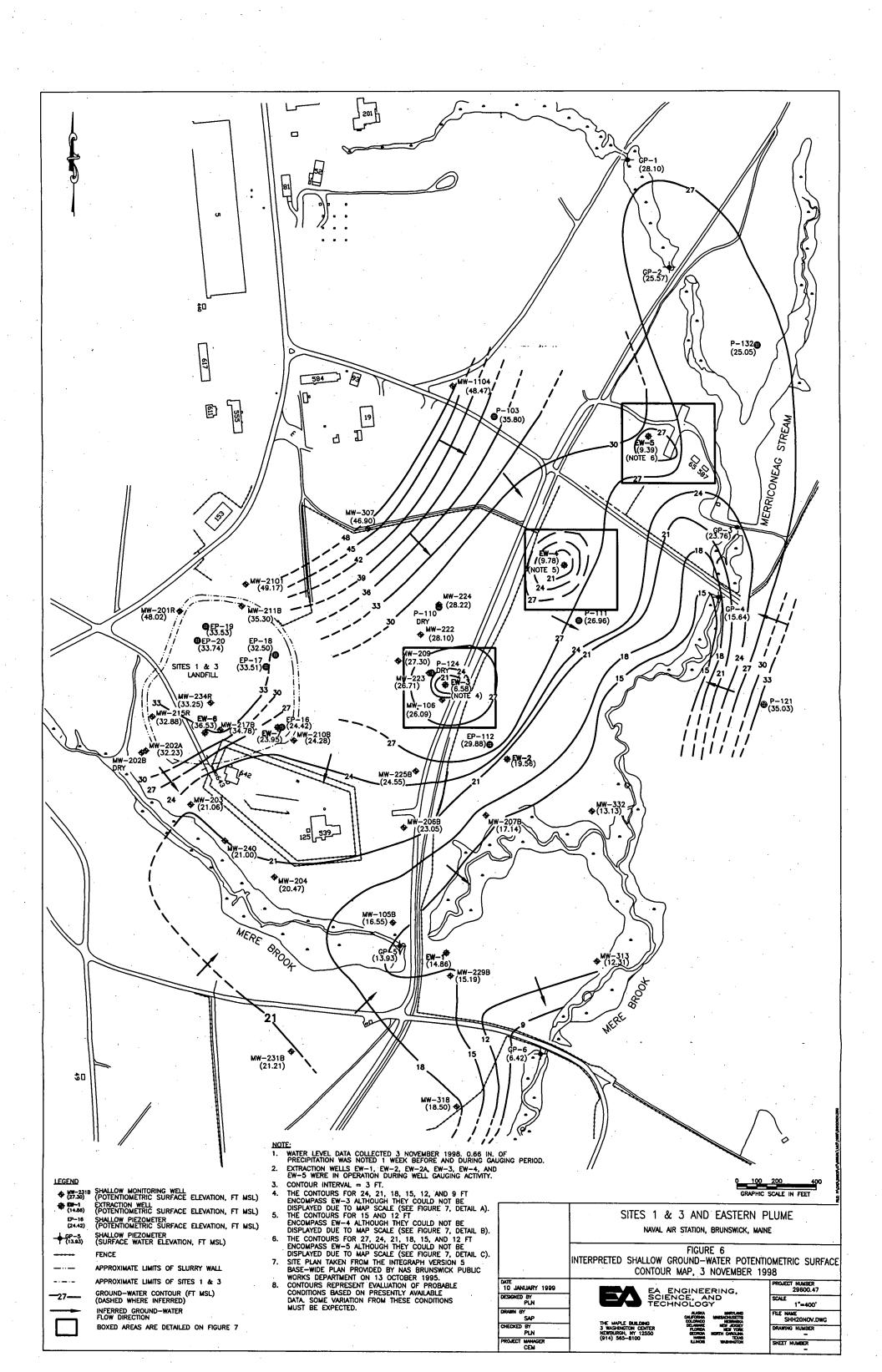

A rigorous quality assurance/quality control program is required by the Draft LTMP to meet the data quality objectives of the aqueous and sediment sampling program, as outlined in the Quality Assurance Project Plan contained in the Draft LTMP (EA 1998). The data obtained during the November 1998 sampling event were determined to be of sufficient quality to be used for the objectives specified in the Draft LTMP (EA 1998).

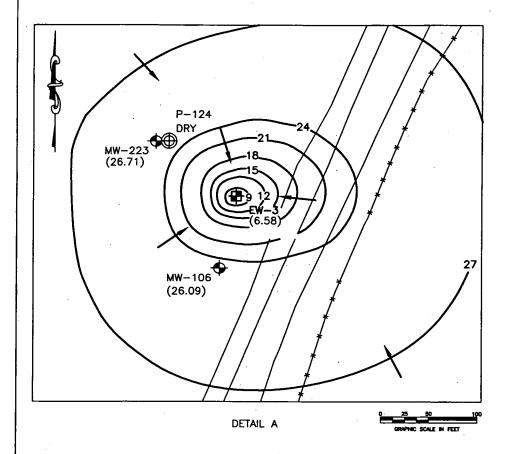

1.7 ANALYTICAL DATA QUALITY REVIEW

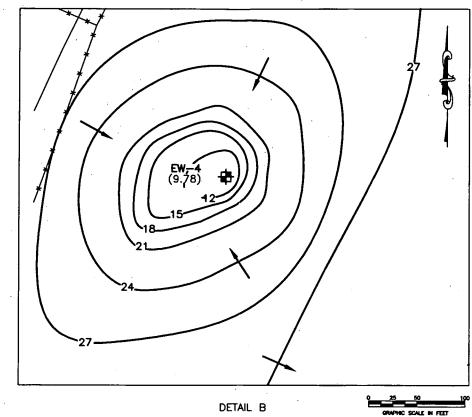

As required by the Draft Quality Assurance Project Plan contained in the Draft LTMP (EA 1998), a review of laboratory data was performed on selected quality control parameters to evaluate precision, accuracy, representativeness, completeness, and comparability and data quality objective requirements. A summary of the analytical data quality review for chemical data is provided in Appendix B. With consideration of the data qualifiers and notes provided

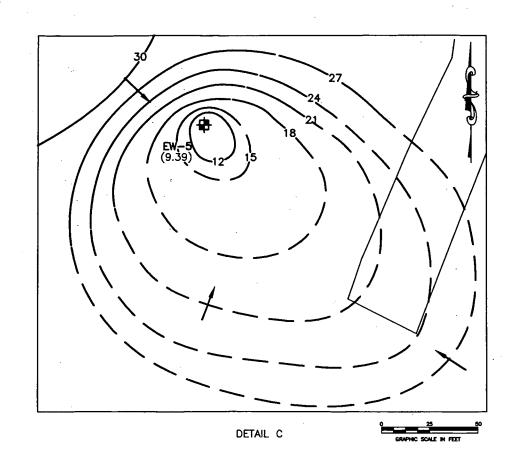

March 1999


in Appendix B, the data represented in this report were found to meet specified acceptance criteria and, therefore, represent data in compliance with the Draft Quality Assurance Project Plan (EA 1998). Method detection limits for sediment and aqueous media are included in Appendix B. Notable findings of the analytical data quality review are summarized in Table 20.









<u>LEGEND</u>

SHALLOW MONITORING WELL (POTENTIOMETRIC SURFACE ELEVATION, FT MSL)

EXTRACTION WELL (POTENTIOMETRIC SURFACE ELEVATION, FT MSL)

PIEZOMETER
(WATER TABLE ELEVATION, FT MSL)
GROUND-WATER CONTOUR (FT MSL)
(DASHED WHERE INFERRED)

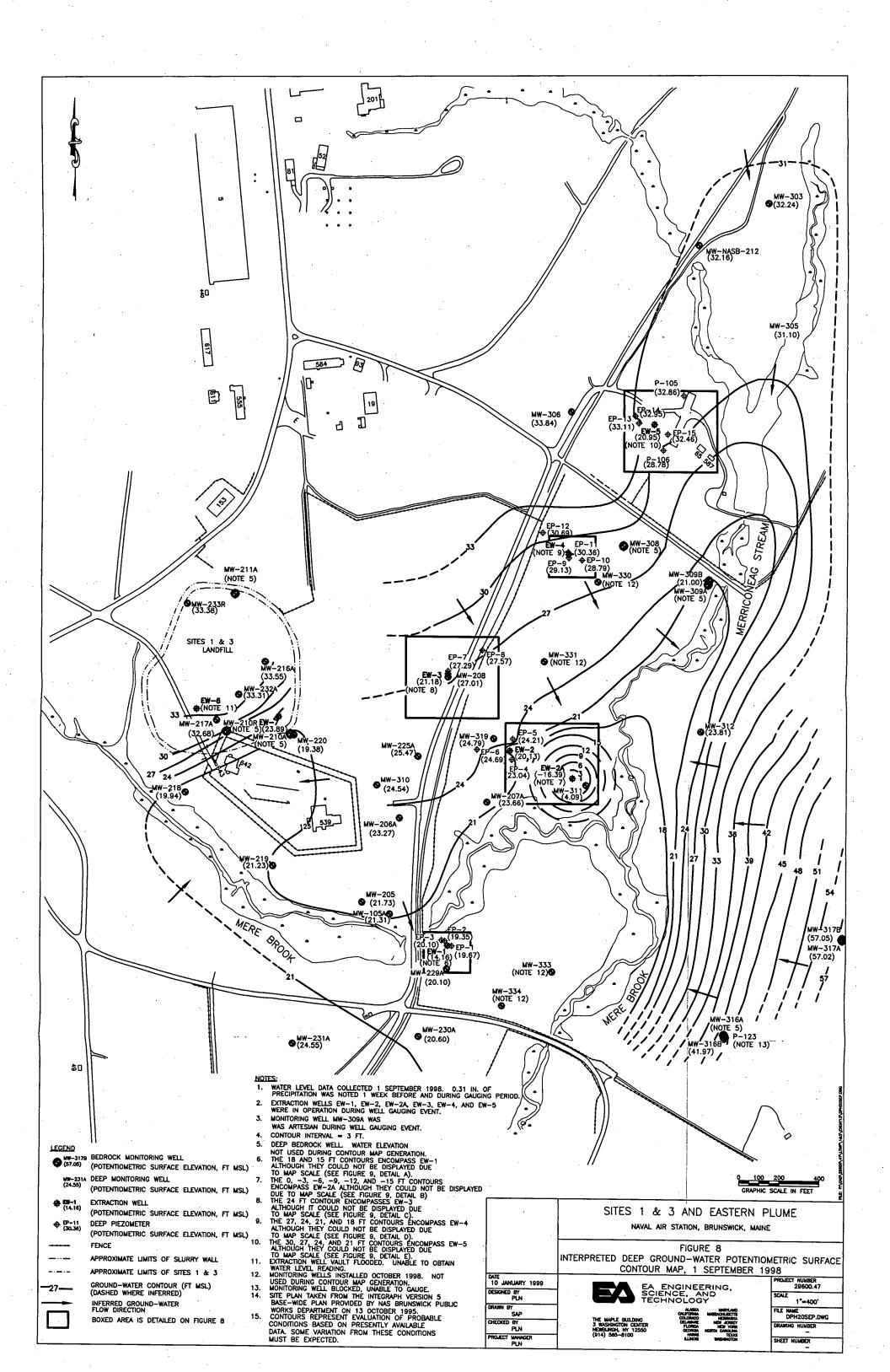
INFERRED GROUND-WATER FLOW DIRECTION

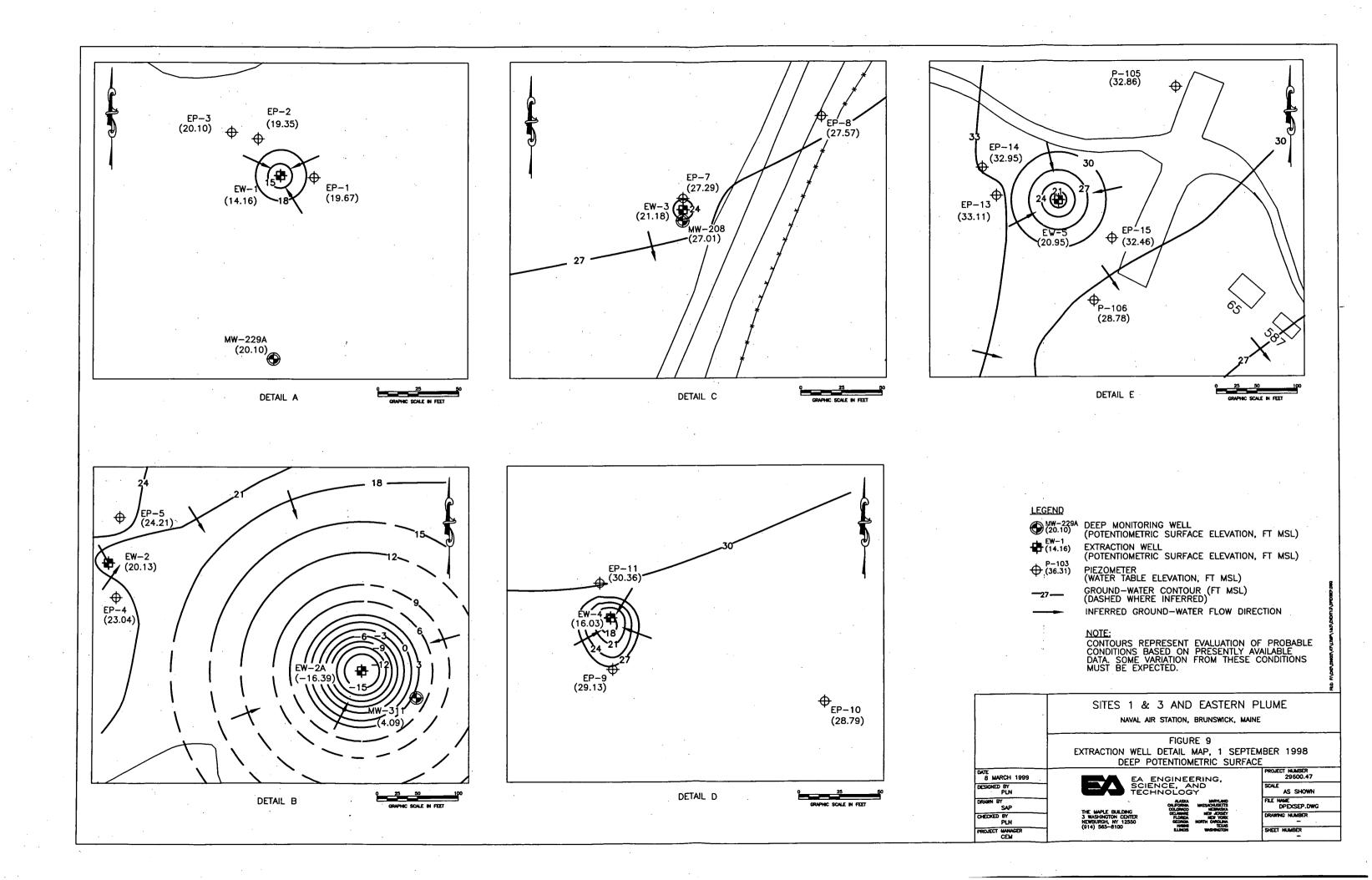
SITES 1 & 3 AND EASTERN PLUME

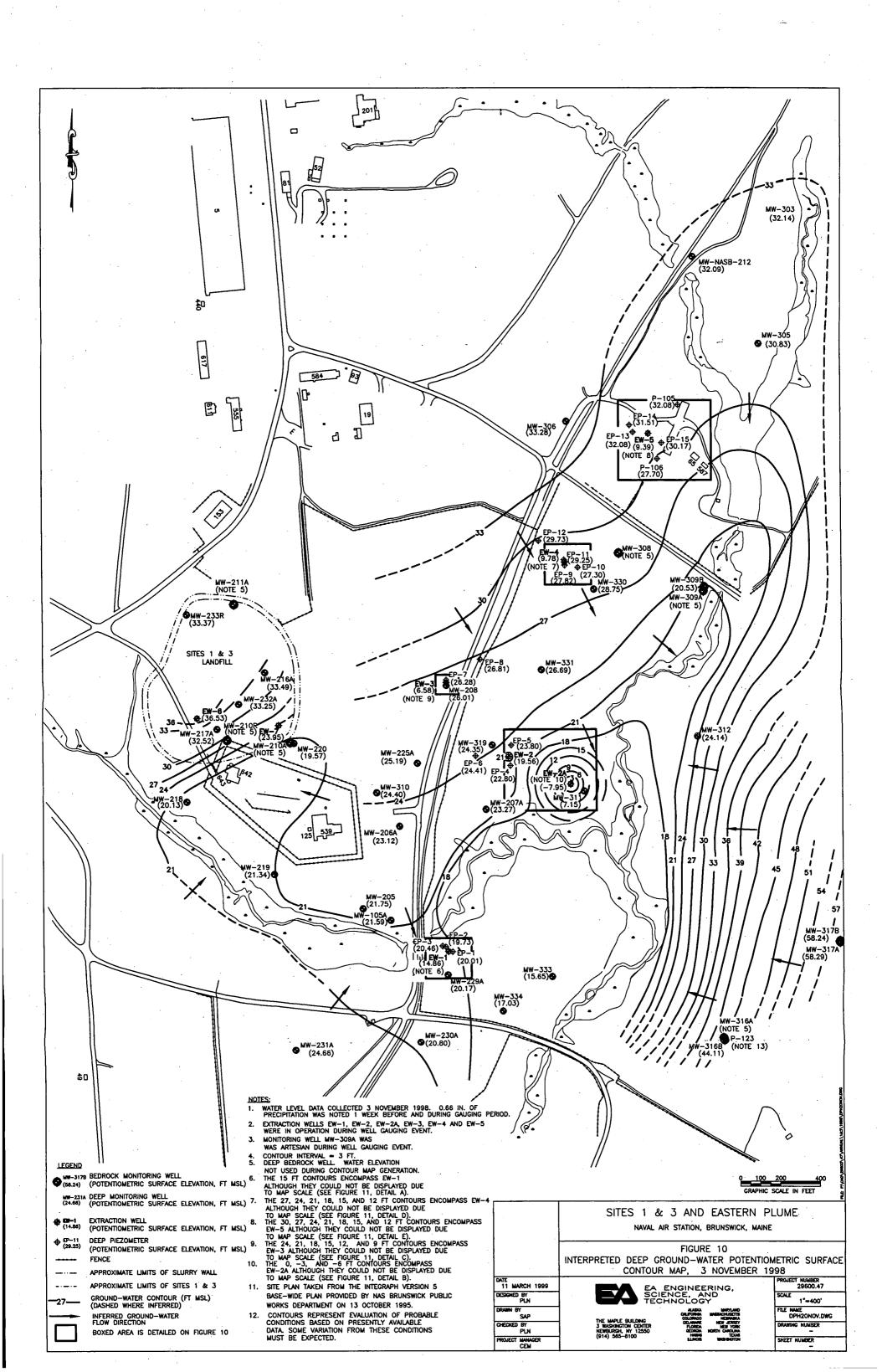
NAVAL AIR STATION, BRUNSWICK, MAINE

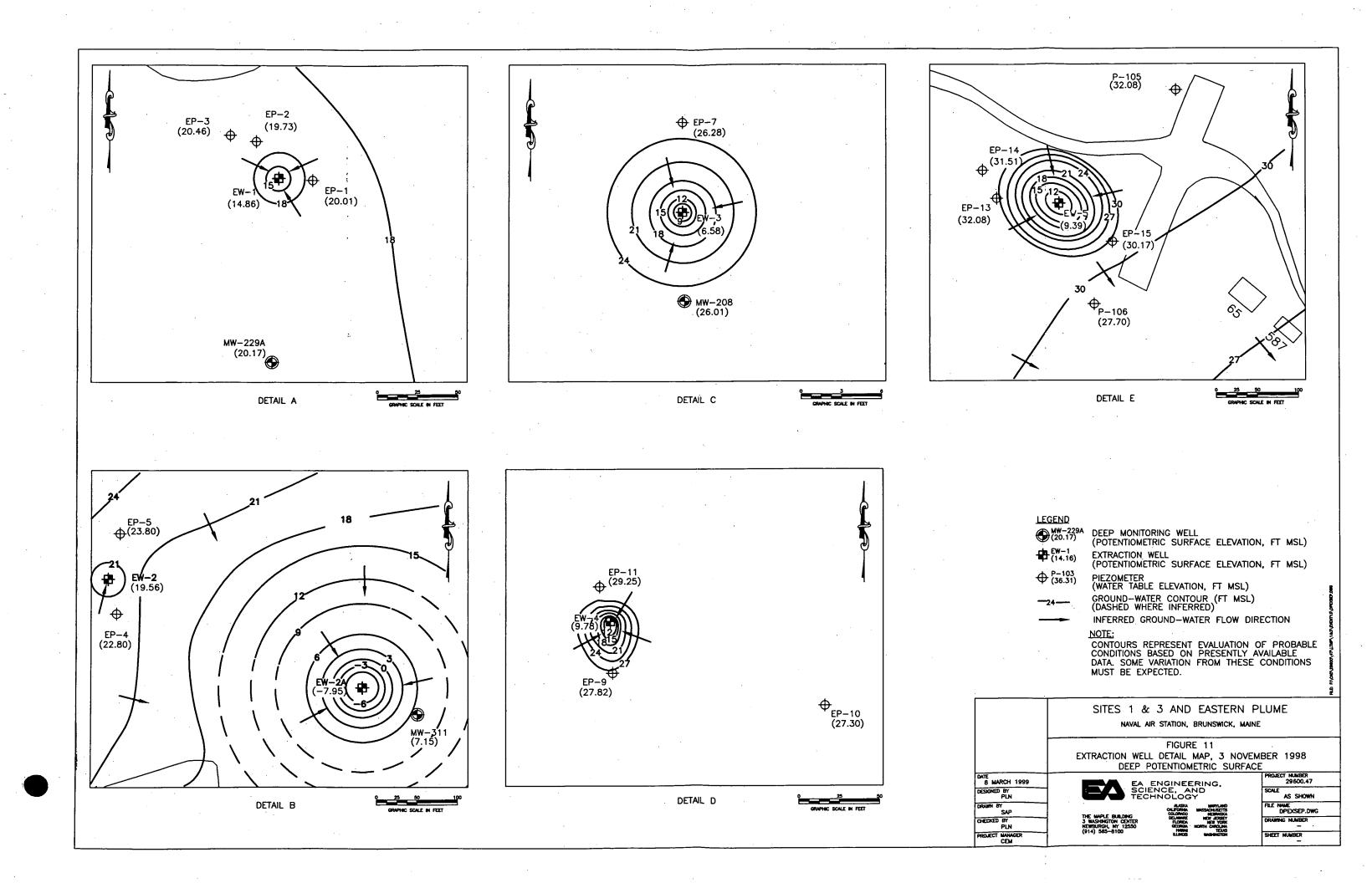
FIGURE 7 EXTRACTION WELL DETAIL MAP, 3 NOVEMBER 1998 SHALLOW POTENTIOMETRIC SURFACE

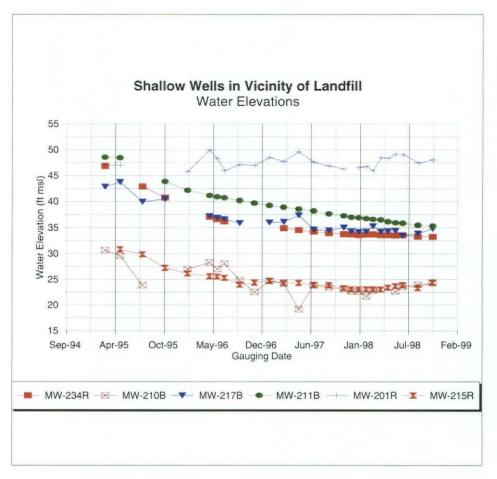
B MARCH 1999


CHECKED BY PLN




AS SHOWN FILE NAME SHEXNOV,DWG DRAWING NUMBER


NOTE:


CONTOURS REPRESENT EVALUATION OF PROBABLE CONDITIONS BASED ON PRESENTLY AVAILABLE DATA. SOME VARIATION FROM THESE CONDITIONS MUST BE EXPECTED.

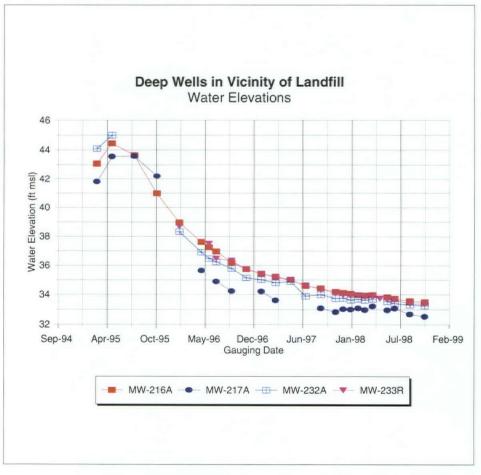
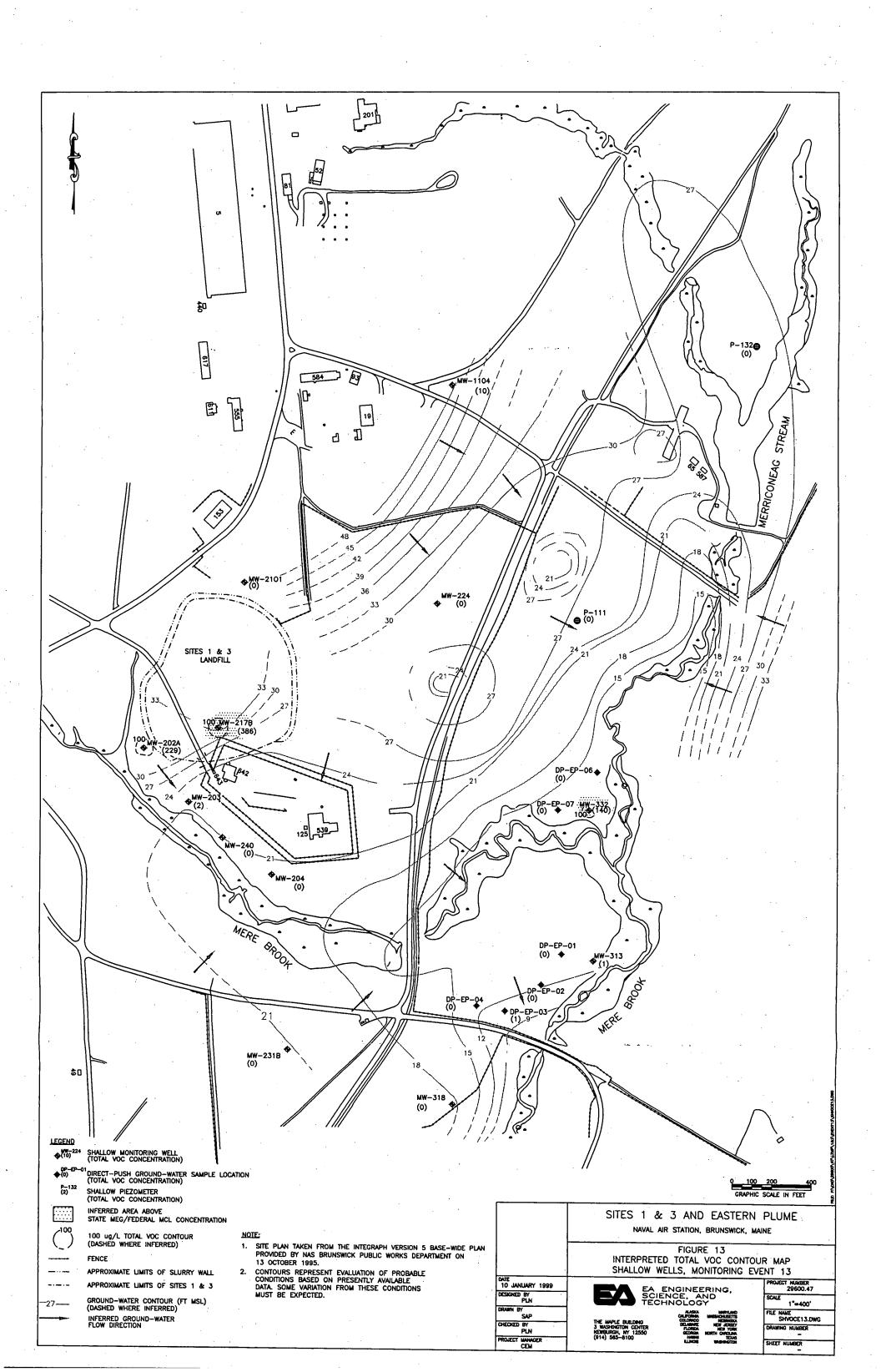
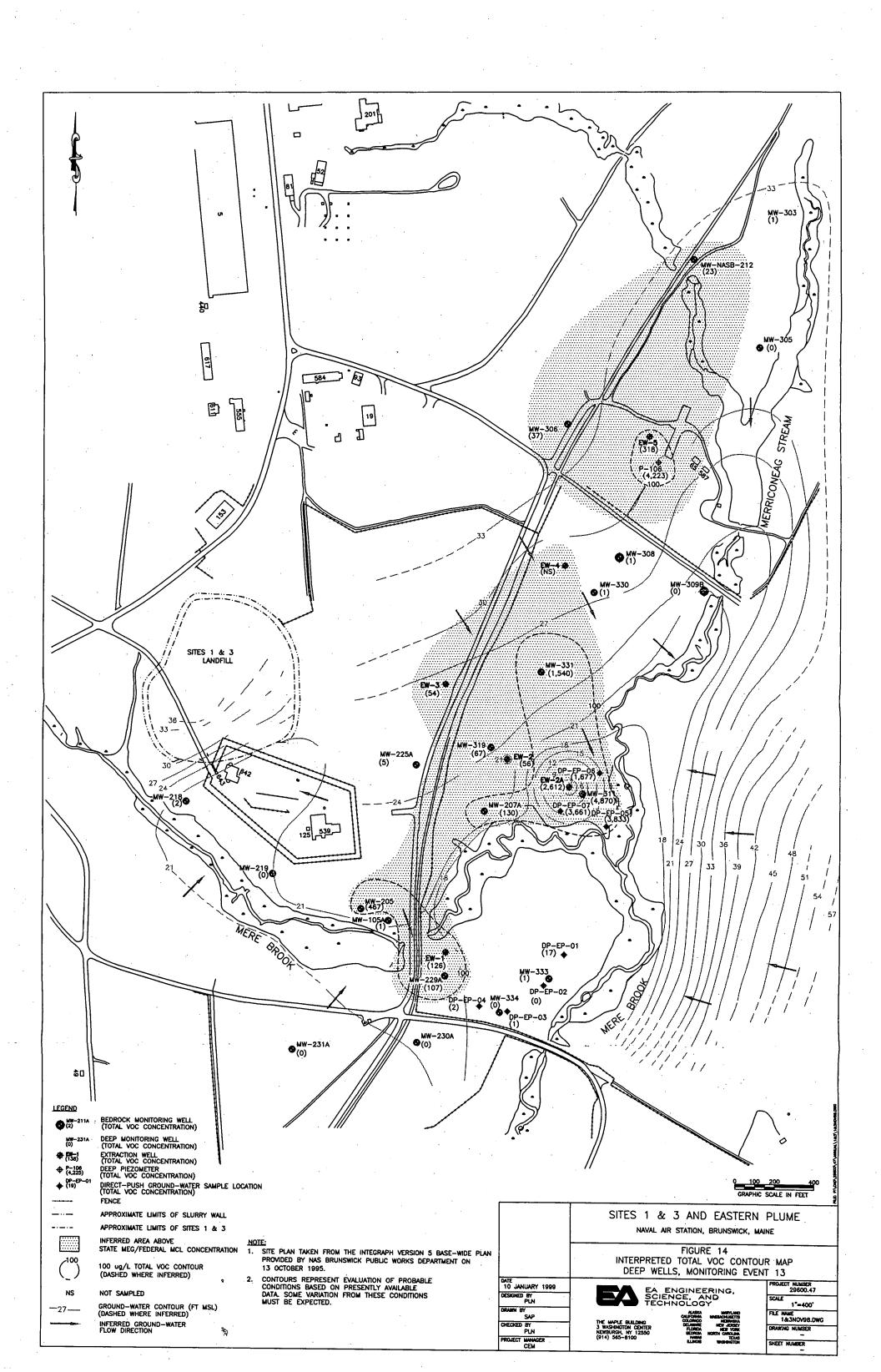




Figure 12: Water elevations within Sites 1 and 3 Landfill, shallow and deep wells.

		Sample Parameters		Monitoring Event 13			
Sample	Monitoring	TCL	TAL	Field			
Type/Location	Frequency	VOC	Elements	Parameters ^(a)	Gauged	Sampled	
Monitoring Wells							
MW-202A	Tri-Annual	Χ.	X	X	X	X	
MW-203	Tri-Annual	X	X	X	X	X	
MW-204	Tri-Annual	X	X	X	X	X	
MW-217B	Tri-Annual	X	X	X	· X	X	
MW-218	Tri-Annual	X	X	X	X	X	
MW-219	Tri-Annual	X	X	X	X	X	
MW-240	Tri-Annual	X	X	X	X	X	
MW-2101	Tri-Annual	X	X	X	X	X	
EW-6	Tri-Annual	NR	NR	X	X	NR	
EW-7	Tri-Annual	NR	NR	X	X	NR	
MW-201R	Tri-Annual	NR	NR	\mathbf{X}^{-1}	\mathbf{X}	NR	
MW-202B	Tri-Annual	NR	NR.	X	X	NR	
MW-210A	Tri-Annual	NR	NR	X	X	NR	
MW-210B	Tri-Annual	NR	NR	X	X	NR	
MW-210R	Tri-Annual	NR	NR	X	X	NR	
MW-211A	Tri-Annual	NR	NR	X	X	NR	
MW-211B	Tri-Annual	NR	NR	X	X	NR	
MW-215R	Tri-Annual	NR	NR	X	X	NR·	
MW-216A	Tri-Annual	NR	NR	X	X	NR	
MW-216B	Tri-Annual	NR	NR	X	X	NR	
MW-217A	Tri-Annual	NR	NR	X	. X	NR	
MW-220	Tri-Annual	NR	NR	X	X	NR	
MW-232A	Tri-Annual	NR	NR	X	X	NR	
MW-233R	Tri-Annual	NR	NR	X	X	NR	
MW-234R	Tri-Annual	NR	NR	X	X	NR	
EP-16	Tri-Annual	NR	NR	X	X	NR	
EP-17	Tri-Annual	NR	NR	X	X	NR	
EP-18	Tri-Annual	NR	NR	X	X	NR	
EP-19	Tri-Annual	NR	NR	X	X	NR	
EP-20	Tri-Annual	NR	NR	X	X	NR	

(a) Determination of field parameters in accordance with EPA/600/4-79/020 using the following methods: pH (Method 150.1), temperature (Method 170.1), specific conductance (Method 180.1), dissolved oxygen (Method 360.1), and Eh.

NOTE: TCL = Target Compound List.

VOC = Volatile organic compounds (EPA SW-846).

TAL = Target Analyte List.

NR = Not required.

		Sample Parameters			Monitoring Event 13			
Sample Type/Location	Monitoring Frequency	TCL VOC	TAL Elements	Field Parameters ^(a)	Gauged	Sampled		
		Leac	hate Station S	Seep				
SEEP-1	Tri-Annual	X	X	X	X ^(b)	Х		
SEEP-3	Tri-Annual	X	X	X	$X^{(b)}$	· X		
SEEP-4	Tri-Annual	X	X	X	$X^{(b)}$	X		
SEEP-5	Tri-Annual	X	X	X	$X^{(b)}$	X		
		Leacha	te Station Sec	diment				
LT-1	Tri-Annual	X	X	NR	NR	X		
LT-3	Tri-Annual	X	X	NR	NR	X		
LT-4	Tri-Annual	X	X	NR	NR	X		
LT-5	Tri-Annual	X	X	NR	NR	X		
	Surface Water							
SW-4	Tri-Annual		X	X	X ^(b)	X		
SW-7	Tri-Annual	X	X	X	X ^(b)	X		
SW-8	Tri-Annual	X	X	X	$X^{(b)}$	X		
SW-9	Tri-Annual	\mathbf{X} .	X	X	$X^{(b)}$	X		
SW-15 ^(c)	Tri-Annual	NR	X	X	$X^{(b)}$	X		
SW-16 ^(c)	Tri-Annual	NR	X	X	X ^(b)	X		

⁽b) Field measurement of water quality indicator parameters only.

⁽c) Surface water locations SW-15 and SW-16 are currently sampled as part of a separate program.

Table 2 March 1999

TABLE 2 SUMMARY OF LONG-TERM MONITORING PROGRAM AT EASTERN PLUME, NAVAL AIR STATION, BRUNSWICK, MAINE

		Samp	le Parameters	Monitor	ing Event 13
Sample	Monitoring	TCL	Field		
Type/Location	Frequency	VOC	Parameters ^(a)	Gauged	Sampled
MW-105 A	Tri-Annual		oring Wells	**	
		X	X	X	X
MW-105 B	Tri-Annual	X	X	X	. X
MW-106	Tri-Annual	NR	X	X	NR
MW-205	Tri-Annual	X	X	X	X
MW-206 A	Tri-Annual	NR	X	X	NR
MW-206 B	Tri-Annual	NR	X	X	NR
MW-207 A	Tri-Annual	X	X	X	X
MW-207 B	Tri-Annual	NR	X	X	NR
MW-208	Tri-Annual	NR	X	Χ.	NR
MW-209	Tri-Annual	NR	X	X	NR
MW-222	Tri-Annual	NR	x	X	NR
MW-223	Tri-Annual	NR	X	X	NR
MW-224	Tri-Annual	X	x	X	X
MW-225 A	Tri-Annual	X	X	X	X
MW-225 B	Tri-Annual	NR	X	X	NR
MW-229 A	Tri-Annual	X	X	X	X
MW-229 B	Tri-Annual	NR	X	X	NR
MW-230 A	Tri-Annual	X	X	X	X
MW-231A	Tri-Annual	X	X	X	X
MW-231B	Tri-Annual	X	X	X	X
MW-303	Tri-Annual	X	X	X	X
MW-305	Tri-Annual	X	X	X	X
MW-306	Tri-Annual	X	X	X	X
MW-307	Tri-Annual	NR	X	X	NR
MW-308	Tri-Annual	X	X	X	. X

⁽a) Determination of field parameters in accordance with EPA/600/4-79/020 using the following methods: pH (Method 150.1), temperature (Method 170.1), specific conductance (Method 180.1), dissolved oxygen (Method 360.1), and Eh.

NOTE: TCL = Target Compound List.

VOC = Volatile organic compounds.

NR = Sampling is not required as per Draft Long-Term Monitoring Plan (EA 1998).

		Samp	la Paramatara	Monitor	ing Event 12							
Sample	Monitoring			Monitor	ing Event 15							
Type/Location	Frequency	VOC	Parameters ^(a)	Gauged	Sampled							
	M	onitoring V	Vells (Continued)		•							
Monitoring Wells (Continued)												
MW-309 B	Tri-Annual	X	X	X	X							
MW-310	Tri-Annual	NR	X	X	NR							
MW-311	Tri-Annual	Χ .	X	X	X							
MW-312	Tri-Annual	NR	X	X	· NR							
MW-313	Tri-Annual	X	X	X	X							
MW-316A	Tri-Annual	NR	X	X	NR							
MW-316B	Tri-Annual	NR	X	X	NR							
MW-317A	Tri-Annual	NR	X	X	NR							
MW-317B	Tri-Annual	NR	· X	X	NR							
MW-318	Tri-Annual	X	X	X	X							
MW-319	Tri-Annual	X	X	X	X							
MW-330	Tri-Annual	X	\mathbf{X}^{\cdot}	. X	X							
MW-331	Tri-Annual	X	X	X	X							
MW-332	Tri-Annual	X	X	X	X							
MW-333	Tri-Annual	X	X	X	X							
MW-334	W-319 Tri-Annual W-330 Tri-Annual W-331 Tri-Annual W-332 Tri-Annual W-333 Tri-Annual W-334 Tri-Annual		X	X	X							
MW-1104	Tri-Annual	X	X	X	X							
MW-NASB-212	Tri-Annual	X	X	X	X							
		P-Series	Piezometers									
P-103	Tri-Annual	NR	X	X	NR							
P-105	Tri-Annual	NR	X	X	NR							
P-106	Tri-Annual	X	X	X	X							
P-110	Tri-Annual	NR	X	X	NR ·							
ì		X	X .	X	X							
		NR	X	X	NR							
P-121	Tri-Annual	NR	X	X	NR							
P-123	Tri-Annual	NR	X	Gauging p	ort obstructed							
P-124	Tri-Annual	NR	X	X	NR							
P-132	Tri-Annual	X	X	X	X							

		Samp	le Parameters	Monitori	ng Event 13
Sample	Monitoring	TCL	Field	ľ	
Type/Location	Frequency	VOC	Parameters ^(a)	Gauged	Sampled
		Extrac	tion Wells		
EW-1	Tri-Annual	X	X	X	X
EW-2	Tri-Annual	X	X	\mathbf{X}_{\perp}	X
EW-2A	Tri-Annual	X	Χ .	X	X
EW-3	Tri-Annual	X	\mathbf{X}	X	X
EW-4	Tri-Annual	NS	NS	X	NS
EW-5	Tri-Annual	X	X	X	. X
		EP-Series	Piezometers		
EP-1	Tri-Annual	NR	X	X	NR
EP-2	Tri-Annual	NR	X	X	NR
EP-3	Tri-Annual	NR	X	X	NR
EP-4	Tri-Annual	NR	X	X	NR
EP-5	Tri-Annual	NR	X	X	NR
EP-6	Tri-Annual	NR	X	\mathbf{X}	NR
EP-7	Tri-Annual	NR	X	X	NR
EP-8	Tri-Annual	NR	X	X	NR
EP-9	Tri-Annual	NR	X	X	NR
EP-10	Tri-Annual	NR	X	X	NR
EP-11	Tri-Annual	NR	X	X	NR
EP-12	Tri-Annual	NR	X	X	NR
EP-13	Tri-Annual	NR	X	X	NR
EP-14	Tri-Annual	NR	X	X	NR
EP-15	Tri-Annual	NR	X	X	NR
			ce Water	(6)	
SW-10	Tri-Annual	X	X	X ^(b)	X
SW-11	Tri-Annual	X	X	X ^(b)	X .
SW-12	Tri-Annual	X	X	X ^(b)	X
SW-13	Tri-Annual	X	X	$X^{(b)}$	X
SW-14	Tri-Annual	X	X	X ^(b)	X
GP-1	Tri-Annual	NR	X	X	NR
GP-2	Tri-Annual	NR	X	X	NR
GP-3	Tri-Annual	NR	X	X	NR
GP-4	Tri-Annual	NR	X	X	NR
GP-5	Tri-Annual	NR NR	X	X	NR
GP-6	Tri-Annual	NR	X	X	NR
(b) Measurement o	f water quality in	ndicator para	meters only.		
NOTE: NS = Not	sampled				
1.012. 110 = 1100				·	·

Table 3 March 1999

TABLE 3 MONITORING WELL GAUGING SUMMARY, SITES 1 AND 3, NAVAL AIR STATION, BRUNSWICK, MAINE

				Bi-Monthly Gau (1 Septembe		Monitoring Eve Da (3 Novem	ta
	Well Riser	Depth to Well		Depth to Water	Ground-Water	Depth to Water	Ground-Water
Well	Elevation	Bottom (ft below	Slurry	(ft below top	Elevation	(ft below top of	Elevation
Designation	(ft MSL)	top of well riser)	Wall	of well riser)	(ft MSL)	well riser)	(ft MSL)
			Shall	ow Monitoring Wells			
MW-201R	58.88	39.51	Outside	11.46	47.42	10.86	48.02
MW-202A	52.40	31.09	Outside	21.43	30.97	20.17	32.23
MW-202B	53.04	17.93	Outside	Well dry		Well dry	
MW-203	52.75	42.04	Outside	31.90	20.85	31.69	21.06
MW-204	50.50	37.18	Outside	30.15	20.35	30.03	20.47
MW-210B	54.72	40.50	Outside	30.75	23.97	30.44	24.28
MW-211B	65.44	36.50	Inside	29.98	35.46	30.14	35.30
MW-215R	62.26	49.95	Inside	29.30	32.96	29.38	32.88
MW-217B	61.25	34.60	Inside	27.40	33.85	26.47	34.78
MW-234R	68.55	59.52	Inside	35.25	33.30	35.30	33.25
MW-240 ^(a)	52.21	42.60	Outside	No data	No data	31.21	21.00
MW-2101	61.05	30.00	Outside	12.45	48.60	11.88	49.17
				p Monitoring Wells		11.00	42.11
MW-216A	71.17	46.96	Inside	37.62	33.55	37.68	33.49
MW-217A	61.78	. 44.56	Inside	29.10	32.68	29.26	32.52
MW-218	54.16	53.54	Outside	34.22	19.94	34.03	20.13
MW-219	51.87	71.82	Outside	30.64	21.23	30.53	21.34
MW-220	47.20	51.50	Outside	27.82	19.38	27.63	19.57
MW-232A	71.18	54.76	Inside	37.87	33.31	37.93	33.25
MW-233R	63.94	50.49	Inside	30.56	33.38	30.57	33.37
			Bedre	ock Monitoring Wells			
MW-210A	52.17	105.60	Outside	19.07	33.10	18.94	33.23
MW-210R	55.90	107.50	Inside	22.00	33.90	21.94	33.96
MW-211A	65.59	137.02	Inside	24.80	40.79	24.40	41.19
 				Extraction Wells			
EW-6 ^(b)	57.74	39.05	Inside	No data	No data	21.21	36.53
EW-7	51.13	50.55	Inside	27.24	23.89	27.18	23.95
			Shallow	EP Series Piezometer			
EP-16	58.92	49.90	Inside	35.61	23.31	34.50	24.42
EP-17	69.73	42.85	Inside	36.15	33.58	36.22	33.51
EP-18	68.58	38.10	Inside	34.98	33.60	36.08	32.50
EP-19	68.22	47.30	Inside	34.58	33.64	34.69	33.53
EP-20	69.55	47.25	Inside	35.77	33.78	35.81	33.74
(a) Well insta	lled October 19	98.					

NOTE: MSL = Mean sea level.

Dashes (---) indicate data cannot be calculated because well was dry.

⁽b) Unable to gauge EW-6 during the 1 September 1998 gauging event due to excess water in the vault.

TABLE 4 MONITORING WELL GAUGING SUMMARY EASTERN PLUME, NAVAL AIR STATION, BRUNSWICK, MAINE

		Depth to Well	Bi-Monthly C			t 13 Gauging Data nber 1998)
	Well Riser	Bottom (ft	Depth to Water	Ground-Water	Depth to Water	Ground-Water
Well	Elevation	below top of	(ft below top	Elevation	(ft below top	Elevation
Designation	(ft MSL)	well riser)	of well riser)	(ft MSL)	of well riser)	(ft MSL)
			allow Monitoring \			
MW-105B	24.55	22.91	8.46	16.09	8.00	16.55
MW-106	51.26	37.27	24.49	26.77	25.17	26.09
MW-206B	42.77	27.17	20.09	22.68	19.72	23.05
MW-207B	22.90	27.17	7.36	15.54	5.76	17.14
MW-209	54.84	32.38	27.01	27.83	27.54	27.30
MW-222	57.43	45.34	28.68	28.75	29.33	28.10
MW-223	53.71	42.61	26.38	27.33	27.00	26.71
MW-224	57.63	46.95	27.68	29.95	29.41	28.22
MW-225B	46.25	42.00	21.88	24.37	21.70	24.55
MW-229B	30.08	32.70	15.36	14.72	14.89	15.19
MW-231B	46.31	57.86	25.15	21.16	25.10	21.21
MW-307	62.70	22.21	16.07	46.63	15.80	46.90
MW-313	21.39	37.14	9.25	12.14	9.08	12.31
MW-318	24.28	25.14	6.38	17.90	5.78	18.50
MW-332 ^(a)	25.33	18.60	No data	No data	12.20	13.13
MW-1104	60.09	27.55	12.33	47.76	11.62	48.47
		I	Deep Monitoring W	ells		
MW-105A	24.19	46.87	2.88	21.31	2.60	21.59
MW-205	45.99	78.77	24.26	21.73	24.24	21.75
MW-206A	43.02	74.36	19.75	23.27	19.90	23.12
MW-207A	24.06	73.22	0.40	23.66	0.79	23.27
MW-208	49.40	103.33	22.39	27.01	23.39	26.01
MW-225A	45.95	76.03	20.48	25.47	20.76	25.19
MW-229A	33.83	64.97	13.73	20.10	13.66	20.17
MW-230A	36.32	82.08	15.72	20.60	15.52	20.80
MW-231A	45.41	62.42	20.86	24.55	20.75	24.66
MW-303	44.28	71.62	12.04	32.24	12.14	32.14
MW-305	43.09	54.12	11.99	31.10	12.26	30.83
MW-306	52.12	56.98	18.28	33.84	18.84	33.28
MW-310	53.39	72.83	28.85	24.54	28.99	24.40
MW-311	21.48	55.78	17.39	4.09	14.33	7.15
MW-312	35.97	71.15	12.16	23.81	11.83	24.14
(a) Monitoring we	ells installed Oct	ober 1998.				
NOTE: MSL = N	Mean sea level.					

Table 4 (Continued) March 1999

		Depth to Well	Bi-Monthly C			t 13 Gauging Data nber 1998)
	Well Riser	Bottom (ft	Depth to Water	Ground-Water	Depth to Water	Ground-Water
Well	Elevation	below top of	(ft below top	Elevation	(ft below top	Elevation
Designation	(ft MSL)	well riser)	of well riser)	(ft MSL)	of well riser)	(ft MSL)
		Deep N	Monitoring Wells (C	continued)		
MW-319	40.16	72.44	15.37	24.79	15.81	24.35
MW-330 ^(a)	35.71	33.40	No data	No data	6.96	28.75
MW-331 ^(a)	30.54	53.80	No data	No data	3.85	26.69
MW-333 ^(a)	27.25	40.00	No data	No data	11.60	15.65
MW-334 ^(a)	30.93	41.60	No data	No data	13.90	17.03
MW-NASB-212	41.64	67.34	9.48	32.16	9.55	32.09
			edrock Monitoring	Wells		
MW-308	37.70	72.85	5.54	32.16	5.75	31.95
MW-309A	22.84	72.71	+3.47	26.31	+3.47	26.31
MW-309B	22.32	59.43	1.32	21.00	1.79	20.53
MW-316A	53.71	103.10	21.66	32.05	20.58	33.13
MW-316B	54.40	57.85	12.43	41.97	10.29	44.11
MW-317A	71.35	120.79	14.33	57.02	13.06	58.29
MW-317B	70.10	96.95	13.05	57.05	11.86	58.24
		Sha	llow P-Series Piezo	meters		
P-103	60.35	29.05	24.31	36.04	24.55	35.80
P-110	56.70	24.14	Dry		Dry	
P-111	31.00	9.99	5.19	26.29	4.52	26.96
P-112	41.12	16.41	12.54	28.58	11.24	29.88
P-121	50.78	17.35	15.48	35.30	15.75	35.03
P-124	51.12	23.25	Dry		Dry	
P-132	42.95	32.46	18.11	24.84	17.90	25.05
			eep P-Series Piezom			
P-105	42.08	70.35	9.22	32.86	10.00	32.08
P-106	38.83	71.06	10.05	28.78	11.13	27.70
P-123	54.19	Blocked	Blocked		Blocked	
		<u> </u>	Extraction Wells	<u> </u>		
EW-1	25.34	99.66	11.18	14.16	10.48	14.86
EW-2	31.63	90.86	11.50	20.13	12.07	19.56
EW-2A	22.27	66.00	38.66	-16.39	30.22	-7.95
EW-3	41.18	67.04	20.00	21.18	34.60	6.58
EW-4	37.13	69.37	21.10	16.03	27.35	9.78
EW-5	36.25	84.99	15.30	20.95	26.86	9.39
NOTE: Dashes () indicate data	cannot be calculate	d because well block	ed or dry.		

		Depth to Well	Bi-Monthly (g Event 13 Gauging Data November 1998)
Well Designation	Well Riser Elevation (ft MSL)	Bottom (ft below top of well riser)	Depth to Water (ft below top of well riser)	Ground-V Elevati (ft MS	on (ft below	top Elevation
		Dee	p EP-Series Piezoi	neters		
EP-1	31.67	100.51	12.00	19.67	7 11.66	20.01
EP-2	29.74	99.00	10.39	19.35	5 10.01	19.73
EP-3	27.91	89.21	7.81	20.10	7.45	20.46
EP-4	32.59	91.11	9.55	23.04	9.79	. 22.80
EP-5	34.61	79.85	10.40	24.21	10.81	23.80
EP-6	40.14	83.51	15.45	24.69	15.73	24.41
EP-7	48.49	70.20	21.20	27.29	22.21	26.28
EP-8	47.31	80.38	19.74	27.57	20.50	26.81
EP-9	37.84	62.46	8.71	29.13	3 10.02	27.82
EP-10	37.78	58.00	8.99	28.79	10.48	27.30
EP-11	41.59	65.03	11.23	30.36	5 12.34	29.25
EP-12	49.38	69.61	18.69	30.69	19.65	29.73
EP-13	38.96	71.03	5.85	33.11	6.88	32.08
EP-14	43.46	80.05	10.51	32.95	11.95	31.51
EP-15	45.37	82.68	12.91	32.46	5 15.20	30.17
		Surfac	e Water Gauging	Stations		
	W 1		onthly Gauging Da September 1998)	ta		ent 13 Gauging Data vember 1998)
Well Designation	Gauging Point Elevation (ft MSL)	Depth to W (ft below gau point)		ation	Depth to Water (ft below gauging point)	Surface Water Elevation (ft MSL)
GP-1	31.10	2.42	28.	68	3.00	28.10
GP-2	23.92	+2.36	26.	28	+1.65	25.57
GP-3	27	3.73	23.	60	3.57	23.76
GP-4	18.39	2.80	15.	59	2.75	15.64
GP-5	23.38	9.20	14.	18	9.45	13.93
GP-6	15.22	10.70	4.5	52	8.80	6.42

Table 5

March 1999

EA Engineering, Science, and Technology

TABLE 5 GROUND-WATER EXTRACTION FLOW RATE AND RUN TIME SUMMARY, AUGUST-NOVEMBER 1998 GROUND-WATER EXTRACTION AND TREATMENT SYSTEM (BUILDING 50) NAVAL AIR STATION, BRUNSWICK, MAINE

		-						Da	te					, <u></u>		
	8/01	8/02	8/03	8/04	8/05	8/06	8/07	8/08	8/09 .	8/10	8/11	8/12	8/13	8/14	8/15	8/16
							EW	-1		,						
Flow rate (gpm)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW	-2								-
Flow rate (gpm)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW-	2A			,		•			
Flow rate (gpm)	17.0	17.0	16.0	17.0	17.0	17.0	17.0	17.0	17.0	16.0	16.0	14.5	14.5	14.5	14.5	14.5
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
				,	············	·	EW-	3 ^(a)								
Flow rate (gpm)	8.0	8.0	8.0	9.0	8.0	8.0	8.0	8.0	8.0	10.0	10.0	11.5	12.0	12.0	12.0	12.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
				···			EW	-4								
Flow rate (gpm)	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW	-5		· · · · · · · · · · · · · · · · · · ·						
Flow rate (gpm)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
(a) Values obtaine	ed by sub	tracting t	he flow o	f EW-1, E	W-2, EW	-2A, EW-	4, and EV	W-5 from	the Easte	rn Plume	influent t	otalized f	low.			

Г						·							*		
							· · · · · · · · · · · · · · · · · · ·	Date	_						
	8/17	8/18	8/19	8/20	8/21	8/22	8/23	8/24	8/25	8/26	8/27	8/28	8/29	8/30	8/31
							EW-1						-		
Flow rate (gpm)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	23.0	24.0	24.0	16.5	24.0	6.5	14.5
	_						EW-2				· · · · · · · · · · · · · · · · · · ·				
Flow rate (gpm)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	23.0	24.0	24.0	16.5	24.0	6.5	14.5
					•	I	EW-2A							· <u></u>	·
Flow rate (gpm)	13.0	17.0	17.0	17.0	17.0	17.0	17.0	16.5	16.0	14.5	11.5	12.5	12.5	12.5	12.8
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	23.0	24.0	24.0	16.5	24.0	6.5	14.5
			. — —			I	EW-3 ^(a)								
Flow rate (gpm)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	10.0	11.5	14.5	13.5	12.5	12.5	12.2
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	23.0	24.0	24.0	16.5	24.0	6.5	14.5
			·				EW-4						· · · · · · · · · · · · · · · · · · ·		
Flow rate (gpm)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	21.0	21.0	21.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	23.0	24.0	24.0	16.5	24.0	6.5	14.5
							EW-5			· · · · · · · ·	· · · · · · · ·				
Flow rate (gpm)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	23.0	24.0	24.0	16.5	24.0	6.5	14.5

								Date							
	9/01	9/02	9/03	9/04	9/05	9/06	9/07	9/08	9/09	9/10	9/11 ^(a)	9/12 ^(a)	9/13	9/14	9/15
							EW-1							·	-
Flow rate (gpm)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW-2						-		
Flow rate (gpm)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
						E	W-2A								
Flow rate (gpm)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	17.0	17.0	17.0	17.0	17.0	17.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
						E	W-3 ^(a)								-
Flow rate (gpm)	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	5.0	5.0	5.0	5.0	5.0	5.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
	· .]	EW-4								
Flow rate (gpm)	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW-5								
Flow rate (gpm)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0

								Date							
	9/16	9/17	9/18	9/29	9/20	9/21	9/22	9/23	9/24	9/25	9/26	9/27	9/28	9/29	9/30
							EW-1								
Flow rate (gpm)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW-2	,							
Flow rate (gpm)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
]	EW-2A								
Flow rate (gpm)	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
				***]	EW-3 ^(a)								
Flow rate (gpm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW-4								
Flow rate (gpm)	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW-5								
Flow rate (gpm)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0

	T			- <u>n, s, -'</u> -					Date							
	10/1	10/2	10/3	10/4	10/5	10/6	10/7	10/8	10/9	10/10	10/11	10/12	10/13	10/14	10/15	10/16
						1		EW-1	10/	10,10	10/11	10/12	10/13	10/14	10/13	10/10
Flow rate (gpm)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.2
Run time (hours)	24.0	22.5	24.0	24.0	24.0	24.0	24.0	24.0	23.0	24.0	24.0	24.0	24.0	24.0	20.0	24.0
		. -						EW-2								
Flow rate (gpm)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	5.0	5.0	5.0	13.8	14.0
Run time (hours)	24.0	22.5	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	20.0	24.0
					· · · · · · · · · · · · · · · · · · ·			EW-2A		· · · · · · · · · · · · · · · · · · ·					****	
Flow rate (gpm)	17.0	17.0	17.0	17.0	17.0	17.0	18.0	22.0	19.3	19.0	19.0	19.0	19.0	19.0	15.2	15.6
Run time (hours)	24.0	22.5	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	20.0	24.0
				· · · · · · · · · · · · · · · · · · ·				EW-3							· · · · · · · · · · · · · · · · · · ·	
Flow rate (gpm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	23.0	23.0
Run time (hours)	24.0	22.5	24.0	24.0	24.0	24.0	24.0	24.0	21.0	24.0	24.0	24.0	24.0	24.0	20.0	24.0
								EW-4					- 8,1			·
Flow rate (gpm)	21.0	21.0	21.0	21.0	21.0	21.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
								EW-5			- · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Flow rate (gpm)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	10.0	10.0	10.0	20.0	20.0
Run time (hours)	24.0	22.5	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	20.0	24.0

				-			·		Date				·			
	10/17	10/18	10/19	10/20	10/21	10/22	10/23	10/24	10/25	10/26	10/27	10/28	10/29	10/30	10/31	
								EW-1								
Flow rate (gpm)	10.0	10.0	10.0	9.7	10.0	8.6	8.5	8.6	8.7	8.8	8.6	8.4	8.6	8.6	8.6	
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	
					· · · · · · · · · · · · · · · · · · ·			EW-2	· · · · · · · · · · · · · · · · · · ·					• • • • • • • • • • • • • • • • • • • •		
Flow rate (gpm)	14.0	14.0	13.0	11.8	14.0	12.5	12.7	12.7	12.7	12.7	12.5	12.6	12.6	12.6	12.6	
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	
							I	EW-2A								
Flow rate (gpm)	15.0	15.0	15.0	20.9	15.6	13.2	13.2	13.3	13.3	13.4	13.3	13.3	13.4	13.4	13.4	
Run time (hours)	24.0	24.0	24.0	12.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	•
		<u> </u>						EW-3		··· · · · · · · · · · · · · · · · · ·	···	<u></u>		-		
Flow rate (gpm)	23.0	23.0	25.0	23.0	24.6	21.8	21.8	21.5	21.2	21.0	20.9	20.4	18.5	20.2	20.2	
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	
								EW-4								
Flow rate (gpm)	0.0	0.0	0.0	0.0	0.0	25.6	25.9	25.6	25.6	25.8	26.4	26.1	26.3	26.4	26.4	
Run time (hours)	0.0	0.0	0.0	0.0	0.0	18.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	
<u> </u>								EW-5								
Flow rate (gpm)	20.0	20.0	20.0	20.0	20.0	18.6	18.6	18.6	18.7	18.7	18.6	18.1	18.7	18.4	18.4	
Run time (hours)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	

					<u></u> <u>-</u> <u>-</u>			Date	· · · · · · · · · · · · · · · · · · ·		. •				
	11/1	11/2	11/3	11/4	11/5	11/6	11/7	11/8	11/9	11/10	11/11	11/12	11/13	11/14	11/15
						· · · · · · · · · · · · · · · · · · ·	EW-1								
Flow rate (gpm)		8.2	8.4	9.7	9.7	10.0	10.0	10.0	10.0	10.0	9.7	9.9	10.0	9.9	9.9
Run time (hours)		24.0	24.0	24.0	24.0	24.0	24.0	24.0	23.0	20.5	24.0	24.0	24.0	24.0	24.0
(EW-2								
Flow rate (gpm)		12.8	12.3	14.3	14.4	14.8	14.6	14.6	14.5	14.7	14.2	14.3	14.8	14.8	14.9
Run time (hours)		24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	20.5	24.0	24.0	24.0	24.0	24.0
			·				EW-2A								
Flow rate (gpm)		13.4	13.4	16.6	16.2	16.2	16.2	16.2	16.2	16.3	16.5	16.5	16.4	16.6	16.6
Run time (hours)		24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	20.5	24.0	24.0	24.0	24.0	24.0
							EW-3					<u></u>			
Flow rate (gpm)		21.1	20.5	20.2	19.2	19.9	19.5	19.5	19.1	19.8	20.5	19.4	21.3	21.3	21.2
Run time (hours)		24.0	24.0	24.0	24.0	24.0	24.0	24.0	21.0	20.5	24.0	24.0	24.0	24.0	24.0
							EW-4								D-11-11-11-11-11-11-11-11-11-11-11-11-11
Flow rate (gpm) ^(b)		26.7	26.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Run time (hours)(b)		24.0	24.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				•			EW-5				<u></u>				
Flow rate (gpm) (a)		18.4	18.3	19.8	19.7	19.7	19.6	19.6	19.5	19.37	19.4	18.9	19.1	19.3	19.3
Run time (hours)		24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	20.5	24.0	24.0	24.0	24.0	24.0
(b) Extraction well I	EW-4 pum	p assemi	oly remove	d for evalu	ation/repla	acement as	of 11/4.								

								Date				:			
	11/16	11/17	11/18	11/19	11/20	11/21	11/22	11/23	11/24	11/25	11/26	11/27	11/28	11/29	11/3
							EW-1								
Flow rate (gpm)	9.8	9.8	10.2	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.6
Run time (hours)	24.0	24.0	24.0	23.5	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
						· · · · · · · · · · · · · · · · · · ·	EW-2		·					<u> </u>	
Flow rate (gpm)	14.9	14.9	15.0	14.9	14.8	14.9	14.9	15.0	15.0	14.0	14.0	14.0	15.0	15.0	15.0
Run time (hours)	24.0	24.0	24.0	23.5	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
	· ·-· · · ·	·		· · · · · · · · · · · · · · · · · · ·			EW-2A								
Flow rate (gpm)	16.9	16.9	17.0	17.1	17.0	16.5	16.5	16.0	17.0	17.0	17.0	17.0	17.0	17.0	16.9
Run time (hours)	24.0	24.0	24.0	23.5	12.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW-3								
Flow rate (gpm)	21.2	20.5	19.0	19.0	18.9	19.0	19.0	19.0	18.0	19.0	18.0	18.0	18.0	18.0	16.8
Run time (hours)	24.0	24.0	24.0	23.5	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
							EW-4		·						
Flow rate (gpm) ^(b)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Run time (hours) ^(b)	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				· ··	···		EW-5							•	
Flow rate (gpm)	19.5	9.8	20.0	20.1	19.5	19.3	19.2	19.0	19.0	19.0	19.2	19.2	. 19.2	19.2	19.4
Run time (hours)	24.0	24.0	24.0	23.5	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0

Table 6 March 1999

TABLE 6 SUMMARY OF WATER QUALITY INDICATOR PARAMETERS MEASURED IN GROUND-WATER SAMPLES COLLECTED ON 4 AND 12 NOVEMBER 1998 AT SITES 1 AND 3, NAVAL AIR STATION, BRUNSWICK, MAINE

Well Designation	Slurry Wall	pН	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Eh (mV)					
			Shallow M	Ionitoring Wells								
MW-202A	Outside	5.66	15.68	564	1.93	15 ^(a)	110					
MW-203	Outside	5.99	13.66	799	8.31	.2	111					
MW-204	Outside	6.42	10.79	53	11.08	2	155					
MW-217B	Inside	6.19	19.12	2,529	1.98	221	-54					
MW-218	Outside	7.56	14.43	882	0.88	18	-189					
MW-240	Outside	7.84	11.50	144	9.50	0	165					
MW-2101	Outside	5.67	14.49	322	5.91	2	224					
			Deep Mo	onitoring Wells								
MW-219	Outside	6.19	11.23	101	7.59	39	169					
(a) YSI water of	(a) YSI water quality meter turbidity probe malfunction. Water was visibly clear at time of sampling.											

NOTE: NTU = Nephelometric turbidity unit.

TABLE 7 SUMMARY OF WATER QUALITY INDICATOR PARAMETERS MEASURED IN GROUND-WATER SAMPLES COLLECTED ON 9-12 NOVEMBER 1998 AT EASTERN PLUME, NAVAL AIR STATION, BRUNSWICK, MAINE

Well Designation	рН	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Eh (mV)
		Shall	ow Monitoring V	Vells		
MW-224	5.70	11.41	51	11.19	0	149
MW-231B	6.37	10.91	52	10.91	8 .	113
MW-313	6.94	8.34	170	0.74	1 .	163
MW-318	6.48	10.82	62	6.56	. 13	55
MW-332	6.12	12.37	35	8.10	0	180
MW-1104	5.92	14.35	102	0.66	0	187
_		Dee	p Monitoring We	ells		
MW-105A	6.81	8.08	35	11.27	5	159
MW-205	6.59	9.92	. 131	3.23	8	243
MW-207A	6.56	8.97	131	0.19	4	106
MW-225A	6.12	8.70	85	7.50	1	242
MW-229A	7.03	9.39	78	7.40	0	169
MW-230A	7.89	8.62	68	0.24	32	-187 .
MW-231A	6.64	9.27	42	9.62	39	100
MW-303	7.96	8.36	160	0.20	0	-217
MW-305	7.94	9.43	152	0.37	0	177
MW-306	5.74	9.66	48	10.50	0	200
MW-311	7.16	9.22	90	3.10	29	9
MW-319	6.29	9.76	97	5.58	8	99
MW-330	8.79	9.43	91	2.67	211	-146
MW-331	6.31	9.00	866	0.72	0	201
MW-333	7.15	9.65	156	0.36	0	124
MW-334	8.26	8.68	148	8.82	233	-132
MW-NASB-212	6.70	9.69	137	0.19	. 4	13
			ock Monitoring V			
MW-308	7.67	9.93	636	0.22	46	3
MW-309B	8.66	9.13	197	0.11	8	-33
			w P-Series Piezor			· · · · · · · · · · · · · · · · · · ·
P-111	6.92	9.98	102	7.77	214	-20
P-132	5.81	11.22	24	10.79	0	204
			P-Series Piezome			
P-106	7.21	8.58	97	3.59	3	99
NOTE: NTU = N	ephelometr	ic turbidity unit.				

March 1999

TABLE 8 SUMMARY OF WATER QUALITY INDICATOR PARAMETERS MEASURED IN SURFACE WATER AND SEEP SAMPLES COLLECTED ON 5 NOVEMBER 1998 AT SITES 1 AND 3, NAVAL AIR STATION, BRUNSWICK, MAINE

Sample	**	Temperature	Conductivity	Dissolved	Turbidity	7 1 (7 1)							
Designation	pН	(°C)	(µmhos/cm)	Oxygen (mg/L)	(NTU)	Eh (mV)							
		·	Surface Wat	ter									
SW- 04	6.67	7.47	92	13.39	66 .	105							
SW-07	6.79	7.45	93	13.16	36	119							
SW-08													
SW-09	6.88	7.09	91	12.47	127	128							
SW-15 ^(a)			N	lo data									
SW-16 ^(a)			N	lo data									
			Seeps										
SEEP-01	6.32	8.47	517	11.15	1,793	129							
SEEP-03			No sample;	insufficient water									
SEEP-04	6.38	9.65	793	11.10	1,105	135							
SEEP-05 6.50 8.15 733 9.32 1,791 96													
(a) Locations sampled under separate surface water program; water quality indicator parameters not													

collected.

NOTE: NTU = Nephelometric turbidity unit.

Table 9 March 1999

TABLE 9 SUMMARY OF WATER QUALITY INDICATOR PARAMETERS MEASURED IN SURFACE WATER COLLECTED ON 5 NOVEMBER 1998 AT EASTERN PLUME, NAVAL AIR STATION, BRUNSWICK, MAINE

Sample Designation	pН	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Eh (mV)					
			Surface Wat	er							
SW-10	6.77	6.52	89	12.29	5	129					
SW-11	6.85	5.96	87	11.86	5	131					
SW-12	6.94	5.87	87	14.27	.18	120					
SW-13	6.73	6.77	83	10.64	10	131					
SW-14	6.94	6.64	82	11.39	18	126					
NOTE: NTU = Nephelometric turbidity unit.											

Table 10 March 1999

TABLE 10 SUMMARY OF WATER QUALITY INDICATOR PARAMETERS MEASURED IN WATER SAMPLES COLLECTED FROM EXTRACTION WELLS AND THE TREATMENT PLANT ON 9 NOVEMBER 1998 AT EASTERN PLUME, NAVAL AIR STATION, BRUNSWICK, MAINE

Well Designation	pН	Temperature (°C)	Conductivity (µmhos/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Eh (mV)					
	· · · · · · · · · · · · · · · · · · ·	Extrac	tion Wells								
EW-1	6.86	8.82	122	9.55	114	194					
EW-2	6.34	8.33	246	10.45	1	212.					
EW-2A	6.57	7.80	109	11.27	27	199					
EW-3	5.98	8.16	128	9.98	433	211					
EW-4			Well offli	ine; no data							
EW-5	6.47	8.23	89	7.74	1	198					
		Ground-Water	Treatment Pla	nt							
Eastern Plume Raw Influent	6.63	11.69	146	11.30	1	255					
Combined Effluent	6.79	12.48	153	14.06	3	252					
NOTE: NTU = Nephelometric turbidity unit.											

March 1999

TABLE 11 SUMMARY OF ANALYTICAL RESULTS FOR GROUND-WATER SAMPLES COLLECTED ON 4 AND 12 NOVEMBER 1998 AT SITES 1 AND 3, NAVAL AIR STATION, BRUNSWICK, MAINE

Analyte	MW- 202A	MW- 203	MW- 204	MW- 217B	MW- 218	MW- 219	MW-219 DUP	MW-240	MW- 2101	QT-	QT-		-
Well Description(a)	S/O	S/O	S/O	S/I	D/O	D/O	D/O	S/O	S/O	001	004	MEG ^(b)	MCL ^(c)
VOLATILE ORGANIC O	OMPOUND	S BY EPA I	METHOD 82	260 (μg/L)			·						•
1,1-Dichloroethane	3	1	(<1U)	0.7 J	0.8J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	70	
Total 1,2-Dichloroethene	(<1U)	0.7J	(<1U)	4	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	70	70
Benzene	(<1U)	(<1U)	(<1U)	7	(<1U)	· (<1U)	(<1U)	(<1U)	(<1U)	· (<1U)	(<1U)	5	5
Chlorobenzene	(<1U)	(<1U)	(<1U)	. 3	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	47	100
Ethylbenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	700	700
Methylene Chloride	(<1U)	(<1U)	(<1U)	0.6J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)		.5
Toluene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	1,400	1,000
Vinyl Chloride	(<2U)	(<2U)	(<2Ü)	· 71	(<2U)	(<2U)	(<2U)	(<2U)	(<2U)	(<2U)	(< 2U)	0.15	2.0
Total Xylenes	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	600	10,000
1,1,2,2-Tetrachloroethane	42	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)		
Trichloroethene	5	(<1U)	(<1U)	0.6J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	5	5
1,1,1-Trichloroethane	160	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	200	200
1,2-Dichlorobenzene	(<1U)	(<1U)	(<1U)	240D	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	600	600
1,4-Dichlorobenzene	7	(<1U)	(<1U)	47	0.9J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	27	75
Chloroethane	(<2U)	(<2U)	(<2U)	2J	(<2U)	(<2U)	(<2U)	(<2U)	(⊘ U)	(<2U)	(⊘ U)	·	
Tetrachloroethene	3	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	3	. 5
Acetone	3J	(<5U)	(<5U)	4J	(⋖ U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)		

⁽a) S = Shallow; D = Deep; B = Bedrock; I = Inside slurry wall; O = Outside slurry wall.

NOTE: QT = Trip Blank. Samples associated with QT-004 were analyzed under a separate sample delivery group shipped on the same day.

U = Not detected. Sample quantitation limits are shown as (<___U).

J = Estimated concentration below detection limit.

Only those analytes detected in at least one of the samples, and the constituents of concern listed in the Draft Long-Term Monitoring Plan (EA 1998), are shown on this table. Results in bold indicate concentrations above primary Federal MCL and/or State MEG.

Refer to Data Quality Review section (Appendix B) for listing of Method Detection Limits for referenced analytical methods.

⁽b) MEG (Maximum Exposure Guideline) obtained from State of Maine Department of Human Services Revised Maximum Exposure Guidelines, memorandum dated 23 October 1992. Dashes (---) indicate no MEG applicable.

⁽c) MCL (Maximum Contaminant Level) obtained from 40 CFR Parts 141 and 142 (U.S. EPA 1994). Dashes (---) indicate no MCL applicable.

March 1999

Analyte	MW- 202A	MW- 203	MW- 204	MW- 217B	MW- 218	MW- 219	MW-219 DUP	MW-240	MW- 2101	QT-	QT-		
Well Description(a)	S/O	S/O	S/O	S/I	D/O	D/O	D/O	S/O	S/O	001	004	MEG ^(b)	MCL ^(c)
VOLATILE ORGANIC	COMPOUNI	S BY EPA	METHOD 82	260 (μg/L) (C	Continued)				,				
1,1-Dichloroethene	0.6 J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	7	7
Chloroform	0.6 J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)		100
1,1,2-Trichloroethane	. 8	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	3	5
1,2-Dichloroethane	(<1U)	(<1U)	(<1U)	11	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	5	. 5
Total VOC(d)	229	2	0	386	2	0	0	0	0	NA	NA	NA	NA
TARGET ANALYTE E	LEMENTS B	Y EPA SERI	IES 6000/700	0 METHOD	S (μg/L)								
Aluminum	27.1B*	34.1B*	160	4,550	259	611	1,040	518	79.1B*	NR	NR	1,430	50-200 ^(e)
Arsenic	(<1.85U)	1.9 B *	(<1.85U)	4.2B*	153	(<1.85U)	(<1.85U)	2.1B*	(<1.85U)	NR	NR		50
Barium	64.9	48.8	2.7B*	154	3.4B*	6.8	8.5	10.6	56.3	NR	NR	1,500	2,000
Beryllium	(<0.17U)	(<0.17U)	(<0.17U)	0.31B	(<0.17U)	(<01.7U)	(<0.17U)	(<0.17U)	(<0.17U)	NR	NR		
Calcium	96,400	148,000	4,060	158,000	16,500	11,600	11,200	17,000	67,000	NR	NR		
Chromium	(<3.37U)	7.9B*	7.7B*	57.4	10.1B*	12.8B*	15.0	10.0B*	9.5B*	NR	NR	100	. 100
Cobalt	18.6B*	(<2.74U)	(<2.74U)	17.5B*	(<2.74U)	(<2.74U)	2.8B*	(<2.74U)	(<2.74U)	NR	NR		
Copper	2.4B*	3.0B*	(<1.40U)	8.9B*	(<1.40U)	(<1.40U)	3.5B*	(<1.40U)	(<1.40U)	NR	NR		1,300 ^(f)
Iron	11,700	66.2	298	22,700	4,270	1,420	2,100	555	48.7B*	NR	NR		300 ^(c)
Lead	(<1.31U)	(<1.31U)	(<1.31U)	8.5	(<1.31U)	(<1.31U)	2.0B*	(<1.31U)	(<1.31U)	NR -	NR		15 ^(f)
Magnesium	14,000	23,800	1,270	56,800	8,580	4,100	4,110	2,090	6,890	NR	NR		
Manganese	1,520	7.8	9.5	3,860	928	19.3	30.1	31.8	26.4	NR	NR	200	50 ^(c)
Mercury	0.07B*	0.07B*	0.06B*	0.12B*	0.07B*	0.07B*	0.07B*	0.07B*	0.08B*	NR	NR	2	2
Nickel	132	8.9B*	(<5.78U)	51.9	7.0B*	12.4B*	6.0B*	(<5.78U)	12.2B*	NR	NR	100	100
Potassium	7,600	4,900	719B*	7,640 ·	7,210	1,380	1,480	4,280	5,240	NR	NR		
Sodium	17,000	20,000	4,820	291,000	164,000	7,730	7,340	8,120	6,050	NR	NR		
Vanadium	(<3.24U)	(<3.24U)	(<3.24U)	11.9B*	(<3.24U)	(<3.24U)	4.7B*	6.3B*	(<3.24U)	NR	NR		
Zinc	6.0B*	2.0B*	2.8B*	20.6B*	3.4B*	5.6B*	7.4B*	6.1B*	3.9B*	NR	NR		5,000 ^(e)

⁽d) Total volatile organic compound calculation does not include common laboratory contaminants such as methylene chloride and acetone. Values are rounded to closest whole number.

NOTE: NA = Not applicable.

⁽e) Secondary MCL, based on taste, odor, or color.

⁽f) Action level.

B* = Analysis not required in Draft Long-Term Monitoring Plan (EA 1998).

TABLE 12 SUMMARY OF ANALYTICAL RESULTS FOR GROUND-WATER SAMPLES COLLECTED ON 9-12 NOVEMBER 1998 AT EASTERN PLUME, NAVAL AIR STATION, BRUNSWICK, MAINE

Analyte	MW- 105A	MW- 205	MW- 207A	MW- 224	MW- 225A	MW- 229A	MW- 230A	MW- 230A DUP	MW- 231A	MW- 231B		
Well Depth ^(a)	D	D	D	S	D	D	D	D	D	S	MEG ^(b)	MCL ^(c)
VOLATILE ORGANIC COM	POUNDS BY	ЕРА МЕТІ	IOD 8260 (µ	ιg/L)	· · · · · · · · · · · · · · · · · · ·							
1,1,1-Trichloroethane	1	260D	24	(<1U)	(<1U)	50	(<1U)	(<1U)	(<1U)	(<1U)	200	200
Total 1,2-Dichloroethene	(<1U)	19	14	(<1U)	2	8	(<1U)	(<1U)	(<1U)	(<1U)	70	70
Methylene Chloride	(<1U)	1B	(<1U)	9B	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)		5
Trichloroethene	(<1U)	150	42	(<1U)	2	41	(<1U)	(<1U)	(<1U)	(<1U)	5	5
Tetrachloroethene	(<1U)	13	48	(<1U)	0.6 J	5	(<1U)	(<1U)	(<1U)	(<1U)	3	5 '
1,1-Dichloroethene	(<1U)	24	2	(<1U)	(<1U)	3	(<1U)	(<1U)	(<1U)	(<1U)	7	7
1,1-Dichloroethane	(<1U)	0.8J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	70	·
Total Xylenes	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	600	10,000
1,1,2-Trichloroethane	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	3	5
Ethylbenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	700	700
Chloroform	(<1U)	0.5J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)		100
Toluene	(<1U)	(<1U)	(<1U)	0.7J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	1,400	1,000
Benzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	5	. 5
1,2-Dichloroethane	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	5	5
1,4-Dicholorobenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	· (<1U)	(<1U)	27	75
Acetone	(<5U)	(⋖ 5U)	(<5U)	(<5U)	(ぐU)	(<5U)	(<5U)	(<5U)	(< 5U)	(<5U)		
Total VOC ^(d)	1	467	130	0	3	107	0	0	0	0	NA	NA

⁽a) D = Deep; S = Shallow; B = Bedrock.

= Analysis at a secondary dilution factor.

= Not detected. Sample quantitation limits are shown as (<___U).

= Compound detected in associated method blank.

= Estimated concentration below detection limit.

NA = Not applicable.

Only those analytes detected in at least one of the samples, and the constituents of concern listed in the Draft Long-Term Monitoring Plan (EA 1998), are shown on this table. Results in bold indicate concentrations above Federal MCL and/or State MEG.

Refer to Data Quality Review section (Appendix B) for listing of Method Detection Limits for referenced analytical methods.

⁽b) MEG (Maximum Exposure Guideline) obtained from State of Maine Department of Human Services Revised Maximum Exposure Guidelines, memorandum dated 23 October 1992. Dashes (---) indicate no MEG applicable.

⁽c) MCL (Maximum Contaminant Level) obtained from 40 CFR Parts 141 and 142 (U.S. EPA 1994). Dashes (---) indicate no MCL applicable.

⁽d) Total volatile organic compound calculation does not include common laboratory contaminants such as methylene chloride and acetone. Values are rounded to closest whole number.

	MW-	MW-	MW-	MW-	MW-	MW-	MW-311	MW-	MW-	MW-	MW-	MW-		
Analyte	303	305	306	308	309B	311	DUP	313	318	319	330	331		<u>.</u>
Well Depth(a)	D	D	D	В	В	Ď	D	S	S	D	D	D	MEG ^(b)	MCL ^(c)
VOLATILE ORGANIC CON	MPOUNDS	BY EPA	METHOD	8260 (μg/l	L)	<u> </u>								
1,1,1-Trichloroethane	(<1U)	(<1U)	18	(<1U)	(<1U)	3,000D	3,400D	(<1U)	(<1U)	5	(<1U)	1,000D	200	200
Total 1,2-Dichloroethene	(<1U)	(<1U)	4	(<1U)	(<1U)	11	11	(<1U)	(<1U)	21	(<1U)	11	70	70
Methylene Chloride	0.5JB	2B	3B	(<1U)	(<1U)	3B	3B	(<1U)	(<1U)	2B	(<1U)	6B		. 5
Trichloroethene	1	(<1U)	10	1	(<1U)	780D	900D	1	(<1U)	18B	(<1U)	370D	5	5
Tetrachloroethene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	20	19	(<1U)	(<1U)	23	(<1U)	12	3	5
1,1-Dichloroethene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	380D	450D	(<1U)	(<1U)	(<1U)	(<1U)	110	7	. 7
1,1-Dichloroethane	(<1U)	(<1U)	2	(<1U)	(<1U)	70	73	0.6 J	(<1U)	(<1U)	(<1U)	34	70	
Total Xylenes	(<1U)	(<1U)	1	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	600	10,000
1,1,2-Trichloroethane	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	4	4	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	3	5
Ethylbenzene	·(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	700	700
Chloroform	(<1U)	(<1U)	0.8 J	(<1U)	(<1U)	2	2	(<1U)	(<1U)	(<1U)	0.5J	0.5J		100
Toluene	(<1U)	(<1U)	0.8J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	1,400	1,000
Benzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	2	2	(<1U)	(<1U)	(<1U)	(<1U)	0.7J	. 5	5
1,2-Dichloroethane	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	9	9	(<1U)	(<1U)	(<1U)	(<1U)	2	5	5
1,4-Dichlorobenzene	(<1U)	(<1U)	(<1U)	0.5J	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	27	75
Acetone	3J	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	·	
Total VOC ^(d)	1	0	37	1.	0	4,278	4,870	1	0	67	1	1,540	NA	NA

	MW-	MW- 332	MW-	MW-	MW-	MW-1104	MW- NASB-							
Analyte	332	DUP	333	334	1104	DUP	212	P-106	P-111	P-132	QT-	QT-		
Well/Piezometer Depth(a)	S	S	D	D	S	S	D	D	S	S	003	004	MEG ^(b)	MCL ^(c)
VOLATILE ORGANIC CON	MPOUNDS	BY EPA M	ETHOD 82	60 (μg/L)										
1,1,1-Trichloroethane	92	96	(<1U)	(<1U)	1	2	(<1U)	2,900D	(<1U)	(<1U)	(<1U)	(<1U)	200	200
Total 1,2-Dichloroethene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	2	17	(<1U)	(<1U)	(<1U)	(<1U)	70	70
Methylene Chloride	0.6JB	0.8JB	(<1U)	(<1U)	2B	2B	2B	2B	(<1U)	2B	3B	(<1U)		5
Trichloroethene	25	26	(<1U)	(<1U)	(<1U)	(<1U)	20B	890D	(<1U)	(<1U)	1B	(<1U)	. 5	5
Tetrachloroethene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	1	15	(<1U)	(<1U)	(<1U)	(<1U)	3	5
1,1-Dichloroethene	8	8	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	340D	(<1U)	(<1U)	(<1U)	(<1U)	7	7
1,1-Dichloroethane	1	0.9 J	1	(<1U)	(<1U)	(<1U)	(<1U)	52	(<1U)	(<1U)	(<1U)	(<1U)	70	
Total Xylenes	(<1U)	(<1U)	(<1U)	(<1U)	0.9 J	7	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	600	10,000
1,1,2-Trichloroethane	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	3	(<1U)	(<1U)	(<1U)	(<1U)	3	5
Ethylbenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	ı	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	700	700
Chloroform	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)		100
Toluene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	1,400	1,000
Benzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	2	(<1U)	(<1U)	(<1U)	(<1U)	5	5
1,2-Dichloroethane	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	4	(<1U)	(<1U)	(<1U)	(<1U)	5	5
1,4-Dichlorobenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	27	75
Acetone	(<5U)	(<5U)	(<5U)	(<5U)	(< 5U)	(<5U)	3Ј	(රU)	(<5U)	(⋖ 5U)	3Ј	(<5U)		
Total VOC(d)	126	140	. 1	0	2	10	23	4,223	0	. 0	NA	NA	NA	NA
NOTE: QT = Trip blank.													·	

TABLE 13 ANALYTICAL RESULTS FOR DIRECT-PUSH SAMPLING CONDUCTED ON 15, 16, AND 28 OCTOBER 1998 NAVAL AIR STATION, BRUNSWICK, MAINE

				DP-EP-02					
	DP-EP-01	DP-EP-01	DP-EP-02	DUP	DP-EP-03	DP-EP-04	DP-EP-04		
	(11-15 ft bgs;	(39-43 ft bgs;	(33-37 ft bgs;	(33-37 ft bgs;	(78-81 ft bgs;	(11-15 ft bgs;	(37-41 ft bgs;		
	12.5 to	-15.5 to	-8.6 to	-8.6 to	-51.7 to	17.1 to	-8.9 to		
Analyte	8.5 MSL)	-19.5 MSL)	-12.6 MSL)	-12.6 MSL)	-54.7 MSL)	13.1 MSL)	-12.9 MSL)	MEG ^(a)	MCL ^(b)
VOLATILE ORGANIC C	COMPOUNDS BY	EPA METHOD	8260 (μg/L)			-			
1,1,1-Trichloroethane	(<5U)	5J	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	200	200
1,1,2,2-Tetrachloroethane	(<5U)								
1,1,2-Trichloroethane	(<5U)	3	5						
1,1-Dichloroethane	(<5U)	7	(<5U)	2Ĵ	(<5U)	(<5U)	(<5U)	70	
1,1-Dichloroethene	(<5U)	5	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	7	7
1,2-Dichloroethane	(<5U)	5	5						
Acetone	(<10U)								
Benzene	(<5U)	5	5						
Carbon Disulfide	(<5U)	(<5U)	(<5U)	(<5U)	1Ј	(<5U)	2J		
Chloroform	(<5U)		100						
Ethylbenzene	(<5U)	700	700						
Methylene Chloride	(<5U)	2 J	3Ј	(<5U)	(<5U)	(<5U)	(<5U)		5
Tetrachloroethene	(<5U)	3	5						
Toluene	(<5U)	1,400	1,000						
Total 1,2-Dichloroethene	(<5U)	70	70						
Total Xylenes	(<5U)	600	10,000						
Trichloroethene	(<5U)	5	5						
Total VOC ^(c)	0	17	0	2	1	0	2	NA	NA

⁽a) Maximum Exposure Guideline (MEG) obtained from State of Maine Department of Human Services, Revised Maximum Exposure Guidelines, memorandum dated 23 October 1992. Dashes (---) indicate no MEG applicable.

NOTE: bgs = Below ground surface; MSL = Mean sea level.

U = Not detected. Sample quantitation limits are shown as (<___U).

J = Estimated concentration below detection limit; DUP indicates duplicate sample.

Only those analytes detected in at least one of the samples, and the contaminants of concern listed in the Draft Long-Term Monitoring Plan (EA 1998), are shown on this table.

Results in bold indicate concentrations above primary Federal MCL and/or State MEG. Trip blank QT-001 (16 October 1998) contained 3J µg/L of acetone; no volatile organic compounds were detected in trip blank QT-002 (28 October 1998).

⁽b) Maximum Contaminant Level (MCL) obtained from 40 CFR Parts 141 and 142 (U.S. EPA 1994). Dashes (---) indicate no MCL applicable.

⁽c) Total volatile organic compound calculation does not include common laboratory contaminants such as methylene chloride and acetone. Values are rounded to closest whole number.

					DP-EP-07	1	''		
	DP-EP-05 (22-	DP-EP-06	DP-EP-06	DP-EP-07	DUP	DP-EP-07	DP-EP-07		
•	26 ft bgs; -12.1 to -16.1	(3-7 ft bgs; 10.7 to 6.7	(39-43 ft bgs; -25,3 to -29.3	(12-16 ft bgs; -1.0 to -5.0	(12-16 ft bgs;	(38-42 ft bgs;	(51-55 ft bgs;		
Analyte	MSL)	MSL)	MSL)	-1.0 to -3.0 MSL)	-1.0 to -5.0 MSL)	-27.0 to -31.0 MSL)	-40.0 to -44.0 MSL)	MEG ^(b)	MCL ^(c)
VOLATILE ORGANIC C				1	1		52)	29	
1,1,1-Trichloroethane	3,000D	(<1U)	1,300D	(<1U)	(<1U)	2,600D	(<1U)	200	200
1,1,2,2-Tetrachloroethane	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)		
1,1,2-Trichloroethane	4	(<1U)	2	(<1U)	(<1U)	3	(<1U)	3	5
1,1-Dichloroethane	43E	(<1U)	26	(<1U)	(<1U)	53	(<1U)	70	
1,1-Dichloroethene	270D	(<1U)	180	(<1U)	(<1U)	240D	(<1U)	7	7 .
1,2-Dichloroethane	8	(<1U)	4	(<1U)	(<1U)	4	(<1U)	5	5
Acetone	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)		·
Benzene	1	(<1U)	(<1U)	(<1U)	(<1U)	2	(<1U)	5 ,	5
Carbon Disulfide	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)		٠
Chloroform	2	(<1U)	(<1U)	(<1U)	(<1U)	1	(<1U)		100
Ethylbenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	700	700
Methylene Chloride	22	(<1U)	6	(<1U)	(<1U)	12	(<1U)		5
Tetrachloroethene	14	(<1U)	5	(<1U)	(<1U)	21	(<1U)	3	5
Toluene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	1,400	10,000
Total 1,2-Dichloroethene	11	(<1U)	(<1U)	(<1U)	(<1U)	17	(<1U)	70	70
Total Xylenes	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	600	100
Trichloroethene	480D	(<1U)	160	(<1U)	(<1U)	720D	(<1U)	5	. 5
Total VOC(c)	3,833	0	1,677	0	. 0	3,661	0	NA	NA

E = Compound concentration exceeds calibration range.

Table 14 March 1999

TABLE 14 SUMMARY OF ANALYTICAL RESULTS FOR WATER SAMPLES COLLECTED ON 9 NOVEMBER 1998 FROM THE GROUND-WATER EXTRACTION WELLS AND TREATMENT SYSTEM NAVAL AIR STATION, BRUNSWICK, MAINE

Analyte	EW-01	EW-02	EW-02A	EW-03	EW-05	QT-003
VOLATILE ORGANIC C	OMPOUNI	DS BY EPA	METHOD 82	260 (μg/L)		
Benzene	(<1U)	(<1U)	1	(<1U)	0.5J	(<1U)
1,1-Dichloroethane	2	0.6J	44	(<1U)	21	(<1U)
1,1-Dichloroethene	6	2	200D	(<1U)	26	(<1U)
Total 1,2-Dichloroethene	16	6	11	24	13	(<1U)
Tetrachloroethene	8	19	18	15	1	(<1U)
1,1,1-Trichloroethane	48	17	1,800D	0.9J	170D	(<1U)
Trichloroethene	46B	11	530D	11B	86B	1B
Methylene Chloride	4B	(<1U)	12B	3B	2B	3B
1,2-Dichloroethane	(<1U)	(<1U)	4	(<1U)	(<1U)	(<1U)
1,1,2-Trichloroethane	(<1U)	(<1U)	3	(<1U)	(<1U)	(<1U)
Acetone	8	(<5U)	(<5U)	(<5U)	(<5U)	3J
Chloroform	(<1U)	(<1U)	1	(<1U)	(<1U)	(<1U)
Total VOC ^(a)	126	56	2,612	54	318	NA

Analyte	Eastern Plume Influent	Combined Effluent	Combined Effluent DUP	Discharge Limit ^(b)
VOLATILE ORGANIC C	OMPOUNDS BY E	PA METHOD 8	260 (μg/L)	
Benzene	(<1U)	(<1U)	(<1U)	
1,1-Dichloroethane	15	3	2	94
1,1-Dichloroethene	. 52	0.6J	(<1U)	7
Total 1,2-Dichloroethene	15	(<1U)	(<1U)	70
Tetrachloroethene	15	(<1U)	(<1U)	5
1,1,1-Trichloroethane	370D	300D	340D	750
Trichloroethene	170B	2B	(<1U)	5
Methylene chloride	3B	1B	0.9JB	5
1,2-Dichloroethane	1	(<1U)	(<1U)	
1,1,2-Trichloroethane	0.6J	(<1U)	(<1U)	5
Acetone	(<5)	4 J	(<1U)	
Chloroform	(<1U)	(<1U)	(<1U)	

- (a) Total volatile organic compound calculation does not include common laboratory contaminants such as methylene chloride and acetone. Values are rounded to closest whole number.
- (b) Ground-water treatment plant discharge limits taken from Agreement to Accept Treated Ground Water, dated December 1994, and prepared by the Brunswick Municipal Sewer District.

NOTE: QT = Trip blank. Samples associated with QT-003 were analyzed under a separate sample delivery group shipped on the same day.

U = Not detected. Sample quantitation limits are shown as (<___U).

B = Analyte detected in associated method blank.

J = Estimated concentration below detection limit.

D = Analysis at a secondary dilution factor.

NA = Not applicable.

Only those analytes detected in at least one of the samples, and the constituents of concern listed in the Long-Term Monitoring Plan (EA 1998a), are shown on this table.

Refer to Data Quality Review section (Appendix B) for listing of Method Detection Limits for referenced analytical methods.

Dashes (---) indicate no discharge limit applicable to this compound/analyte.

TABLE 15 SUMMARY OF ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES COLLECTED ON 5 NOVEMBER 1998 AT SITES 1 AND 3, NAVAL AIR STATION, BRUNSWICK, MAINE

Analyte	SW-04	SW-07	SW-08	SW-08 DUP	SW-09	SW-15 ^(a)	SW-16 ^(a)	QT-002	QS-001	QD-001
VOLATILE ORGANIC	С СОМРОС	INDS BY EI	PA METHO	D 8260 (μg/L)						
Chloroform	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	NR	NR	(<1U)	13	14
Carbon Disulfide	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	NR	NR	0.5J	(<1U)	(<1U)
Total Xylenes	0.5J	(<1U)	(<1U)	(<1U)	(<1U)	NR	NR	1	(<1U)	(<1U)
Tetrachloroethene	(<1U)	(<1U)	(<1U)	(<1U)	. (<1U)	NR	NR	1	(<1U)	(<1U)
Trichloroethene	1B	(<1U)	0.7JB	(<1U)	0.8J	NR	NR	2B	(<1U)	(<1U)
Ethylbenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	NR	NR	0.6J	(<1U)	(<1U)
Acetone	4Ј	(<5U)	3Ј	(<5U)	(<1U)	NR	NR	4Ј	3ЈВ	(<5U)
1,2-Dichlorobenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	NR	NR	2	(<1U)	(<1U)
1,3-Dichlorobenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	NR	NR	0.9J	(<1U)	(<1U)
1,4-Dichlorobenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	NR	NR	1	(<1U)	(<1U)
Methylene chloride	10B	(<1U)	6B	7B	6B	NR	NR	0.9 JB	4B	5B
TARGET ANALYTE I	LIST ELEM	ENTS BY F	EPA 6000/70	000/9000 SERIE	S METHOD	S (μg/L)				***
Aluminum	121	124	220	230	118	170	180	NR	(<19.75U)	(<19.75U)
Barium	21.0	21.4	22.1	21.8	20.1	22	23	NR	0.40B*	1.0B*
Calcium	7,980	8,420	8,090	7,920	7,900	8,600	8,800	NR	(<11.89U)	27.3B*
Chromium	1.7B*	0.79B*	1.2B*	0.99B*	0.71B*	(<10U)	(<10U)	NR	(<0.63U)	0.68B*
Copper	(<0.69U)	(<0.69U)	(<0.69U)	(<0.69U)	(<0.69U)	(<10U)	(<10U)	NR	(<0.69U)	(<0.69U)
Iron	935	1,280	1,540	1,460	1,120	530	1,200	NR	29.8B*	47.1
Lead	4.2B*	4.0B*	4.0B*	4.0B*	2.9B*	(<0.2U)	2.3	NR	3.0B*	2.7B*
Magnesium	1,720	1,840	1,800	1,760	1,750	2,100	2,200	NR	(<12.17U)	(<12.17U)
Manganese	201	237	251	244	230	83	210	NR	0.37B*	0.61B*
Mercury	0.06B*	0.04B*	0.03B*	0.05B*	0.04B*	(<0.2U)	(<0.2U)	NR	0.04B*	(<0.01U)
Nickel	0.88B*	(<0.77U)	1.1B*	(<0.77U)	0.94B*	(<10U)	(<10U)	NR	(<0.77U)	(<0.77U)
Potassium	1,840	2,050	1,620	1,770	2,030	1,900	1,900	NR	(<435.16U)	(<435.16U)
Sodium	11,700	11,800	11,600	11,500	11,400	14,000	12,000	NR	209	202
Vanadium	0.78B*	0.54B*	1.5B*	1.2B*	0.72B*	(<10U)	(<10U)	NR	(<0.46U)	(<0.46U)
Zinc	5.4B*	4.9B*	11.9B*	6.8B*	5.2B*	15	140	NR	3.3B*	3.2B*
(a) Samples were taken	A. Marial Air	Ctation Day	namials name	and during a se						

(a) Samples were taken by Naval Air Station, Brunswick personnel during a separate sampling event.

NOTE: QT = Trip blank. Samples associated with QT-002 were analyzed with a separate sample delivery group shipped on the same day.

QS = Equipment rinsate blank.

OD = Source water blank.

Not detected. Sample quantitation limits are shown as (<__U).
 Estimated concentration below detection limit.

= Analyte detected in associated method blank.

= Analyte concentration is between the Instrument Limits and the Contract Required Detection Limit.

NR = Analysis not required.

Only those analytes detected in at least one of the samples, and constituents of concern listed in the Draft Long-Term Monitoring Plan (EA 1998), are shown on this table.

Refer to Data Quality Review section (Appendix B) for listing of Method Detection Limits for referenced analytical methods.

TABLE 16 SUMMARY OF ANALYTICAL RESULTS FOR SURFACE WATER SAMPLES COLLECTED ON 5 NOVEMBER 1998 AT EASTERN PLUME. NAVAL AIR STATION, BRUNSWICK, MAINE

	SW-	SW-	SW-	SW-	SW-13	SW-	QT-	QS-	QD-
Analyte	10	11	12	13	DUP	14	002	003	001
VOLATILE ORGAN	IC COM	OUNDS	BY EPA	METHO	D 8260 (μg/I	(۲)			
Chloroform	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	11	14
Methylene Chloride	0.5JB	(<1U)	(<1U)	(<1U)	(<1U)	2B	0.9JB	4B	5B
Trichloroethene	1B	2B	3B	2B	2B	3B	2B	4B	(<1U)
Tetrachloroethane	(<1U)	(<1U)	0.6J	(<1U)	(<1U)	0.5J	1	(<1U)	(<1U)
Ethylbenzene	(<1U)	(<1U)	0.9J	(<1U)	(<1U)	0.6 J	0.6J	(<1U)	(<1U)
Total Xylenes	(<1U)	(<1U)	5	(<1U)	(<1U)	1	1	(<1U)	(<1U)
Carbon Disulfide	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	0.6J	0.5J	(<1U)	(<1U)
Toluene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	0.7J	(<1U)	(<1U)	(<1U)
1,2-Dichlorobenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	1	2	(<1U)	(<1U)
1,3-Dichlorobenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	1	0.9 J	(<1U)	(<1U)
1,4-Dichlorobenzene	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	1	. 1	(<1U)	(<1U)
Acetone	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	(<5U)	4 J	(<5U)	(<5U)

OT = Trip blank.

OS = Equipment rinsate blank.

Source water blank. Samples associated with QD-001 were analyzed under a separate sample delivery group shipped on the same day.

Not detected. Sample quantitation limits are shown as (<___U).

Analyte detected in associated method blank.

= Estimated concentration below detection limit.

Only those analytes detected in at least one of the samples, and constituents of concern listed in the Draft Long-Term Monitoring Plan (EA 1998), are shown on this table.

Refer to Data Quality Review section (Appendix B) for listing of Method Detection Limits for referenced analytical methods.

Table 17 March 1999

TABLE 17 SUMMARY OF ANALYTICAL RESULTS FOR LEACHATE STATION SEEP SAMPLES COLLECTED ON 5 NOVEMBER 1998 AT SITES 1 AND 3, NAVAL AIR STATION, BRUNSWICK, MAINE

Analyte	SEEP-01	SEEP-01 DUP	SEEP-04	SEEP-05	QT-002	QS-001	QD-001
VOLATILE ORGANIC CO	MPOUNDS BY	EPA METHOD 826	0 (μg/L)				
1,1-Dichloroethane	1	1	15	0.6J	(<1U)	(<1U)	(<1U)
Trichloroethene	(<1U)	(<1U)	3	(<1U)	2B	(<1U)	(<1U)
1,1,2,2-Tetrachloroethane	4	4	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)
Ethylbenzene	(<1U)	(<1U)	(<1U)	(<1U)	0.6J	(<1U)	(<1U)
Total Xylenes	(<1U)	(<1U)	(<1U)	(<1U)	1	(<1U)	(<1U)
Methylene Chloride	(<1U)	(<1U)	(<1U)	(<1U)	0.9JB	4B	5B
1,1,1-Trichloroethane	5	6	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)
1,2-Dichlorobenzene	(<1U)	(<1U)	1	0.8J	2	(<1U)	(<1U)
1,3-Dichlorobenzene	(<1U)	(<1U)	(<1U)	(<1U)	0.9J	(<1U)	(<1U)
1,4-Dichlorobenzene	(<1U)	(<1U)	1	0.9J	1	(<1U)	(<1U)
Chlorobenzene	(<1U)	(<1U)	0.6J	(<1U)	(<1U)	(<1U)	(<1U)
Acetone	(<5U)	(<5U)	3ЈВ	4JB	4 J	3ЈВ	(<5U)
Carbon Disulfide	(<1U)	(<1U)	(<1U)	(<1U)	0.5J	(<1U)	(<1U)
Tetrachloroethene	(<1U)	(<1U)	(<1U)	(<1U)	1	(<1U)	(<1U)
Vinyl Chloride	(<2U)	(<2U)	11	(<2U)	(<2U)	(<2U)	(<2U)
Total 1,2-Dichloroethene	(<1U)	(<1U)	30	(<1U)	(<1U)	(<1U)	(<1U)
Chloroform	(<1U)	(<1U)	(<1U)	(<1U)	(<1U)	13	14

NOTE: QT = Trip blank. Samples associated with QT-002 were analyzed under a separate sample delivery group shipped on the same day.

OS = Equipment rinsate blank.

QD = Source water blank.

U = Not detected. Sample quantitation limits are shown as (<___U).

= Compound detected in associated method blank.

= Estimated concentration below detection limit.

SEEP-2 was dry, therefore, no aqueous sample was collected.

Only those analytes detected in at least one of the samples and the constituents of concern listed in the Draft Long-Term

Monitoring Plan (EA 1998) are shown on this table.

Analyte	SEEP-01	SEEP-01 DUP	SEEP-04	SEEP-05	QT-002	QS-001	QD-001
TARGET ANALYTE LIST	ELEMENTS B	BY EPA SERIES 6000	77000 METHO	DDS (μg/L)			
Aluminum	14,000	7,220	599	23,400	NR	(<19.75U)	(<19.75U)
Antimony	(<1.98U)	(<1.98U)	(<9.90U)	(<9.90U)	NR	(<1.98U)	(<1.98U)
Arsenic	49.5	28.9	95.9	7,550	NR	(<1.85U)	(<1.85U)
Barium	988	950	544.	. 530	NR	0.40B*	1.0B*
Beryllium	7.0	4.4B*	(<0.17U)	0.61B*	. NR	(<0.18U)	(<0.18U)
Cadmium	3.9B*	3.0B*	(<1.25U)	(<1.25U)	NR	(<0.25U)	(<0.25U)
Calcium	186,000	161,000	150,000	135,000	NR	(<11.89U)	27.3B*
Chromium	24.7	13.7B*	4.3B*	48.3	NR	(<0.63U)	0.68B*
Cobalt	224	129	55.6	68.9	NR	(<0.82U)	(<0.82U)
Copper	. 45.6	30.4	(<3.45U)	10.3B*	NR	(<0.69U)	(<0.69U)
Iron	376,000	19,700	1,080,000	1,990,000	NR	29.8B*	47.1B*
Lead	99.7	61.0	(<6.55U)	76.9	NR	3.0B*	2.7B*
Magnesium	15,500	13,100	22,100	40,500	NR	(<12.17U)	(<12.17U)
Manganese	3,600	1,870	5,310	7,620	NR	0.37B*	0.61B*
Mercury	1.7	1.1	0.26	0.44	NR	0.04B*	(<0.01U)
Nickel	169	122	14.6B*	55.5	NR	(<0.77U)	(<0.77U)
Potassium	4,370	3,670	9,970	7,630	NR	(<435.16U)	(<435.16U)
Selenium	15.3	7.9B*	17.4B*	47.3B*	NR	(<3.19U)	(<3.19U)
Silver	1.9B*	3.8B*	2.5B*	3.7B*	NR	(<2.66U)	(<2.66U)
Sodium	15,000	14,200	52,700	40,500	NR	209	202
Thallium	(<3.22U)	(<3.22U)	(<16.10U)	35.9B*	NR	(<3.22U)	(<3.22U)
Vanadium	105	67.6	13.2B*	98.9B*	NR	(<0.46U)	(<0.46U)
Zinc	237	177	62.2B*	246	NR	3.3B*	3.2B*

NOTE: B* = Analyte concentration is between the Instrument Detection Limit and the Contract Required Detection Limit.

NR = Analysis not required.

Table 18 March 1999

TABLE 18 SUMMARY OF ANALYTICAL RESULTS FOR LEACHATE STATION SEDIMENT SAMPLES COLLECTED ON 5 NOVEMBER 1998 AT SITES 1 AND 3, NAVAL AIR STATION, BRUNSWICK, MAINE

Analyte	LT-1	LT-1 DUP	LT-3.	LT-4	LT-5 ^(a)	QT-002 (μg/L)	QS-002 (μg/L)	QD-001 (μg/L)
VOLATILE ORGANIC COM	APOUNDS BY	Y EPA MET	HOD 8260 (μ	g/kg)				
Methylene chloride	150	160	340	57	68	0.9JB	4B	5B
1.1-Dichloroethane	57	39	280	12	(<5U)	(<1U)	(<1U)	(<1U)
Total 1,2-dichloroethene	(<6U)	(<6U)	(<8U)	21	(<5U)	(<1U)	(<1U)	(<1U)
1,2-Dichlorobenzene	(<6U)	(<6U)	110	(<4U)	120	2	(<1U)	(<1U)
1,3-Dichlorobenzene	(<6U)	(<6U)	21	(<4U)	(<5U)	0.9J	(<1U)	(<1U)
1,4-Dichlorobenzene	17	(<6U)	250	12	110	1	(<1U)	(<1U)
Ethylbenzene	(<32U)	(<32U)	(<39U)	(<18U)	(<26U)	0.6J	(<1U)	(<1U)
Total xylenes	(<32U)	(<32U)	(<39U)	(<18U)	(<26U)	1	(<1U)	(<1U)
Trichloroethene	(<6U)	(<6U)	35	(<4U)	(<5U)	2B	(<1U)	(<1U)
1,1,2,2-Tetrachloroethane	(<6U)	57	950	(<4U)	(<5U)	(<1U)	(<1U)	(<1U)
Acetone	3,300D	160	2,200D	820D	530	4 J	(<5U)	(<5U)
Vinyl Chloride	(<13U)	(<13U)	(<16U)	(<7U)	(<10U)	(<2U)	(<2U)	(<2U)
Chloroform	(<6U)	(<6U)	(<8U)	(<4U)	(<5U)	(<1U)	12	14
1,1,1-Trichloroethane	(<6U)	(<6U)	600	(<4U)	(<5U)	(<1U)	(<1U)	(<1U)
Tetrachloroethene	(<6U)	(<6U)	77	(<4U)	(<5U)	. 1	(<1U)	(<1U)
Chlorobenzene	(<6U)	(<6U)	32	(<4U)	(<5U)	(<1U)	(<1U)	. (<1U)
Carbon Disulfide	(<6U)	(<6U)	(<8U)	(<4U)	14	0.5J	(<1U)	(<1U)
1,1,2-Trichloroethane	(<6U)	18	64	(<4U)	(<5U)	(<1U)	(<1U)	(<1U)
2-Butanone	120	(<32U)	270	180	. 120	(<5U)	(<5U)	(<5U)

⁽a) Reanalysis due to low surrogate recovery.

NOTE: QT = Trip blank. Samples associated with QT-002 were analyzed under a separate sample delivery group shipped on the same day.

QS = Equipment rinsate blank. Samples associated with QS-002 were analyzed under a separate sample delivery group shipped on the same day.

QD = Source water blank. Samples associated with QD-001 were analyzed under a separate sample delivery group shipped on the same day.

= Estimated concentration below detection limit.

= Compound detected in associated method blank.

U = Not detected. Sample quantitation limits are shown as (<___U).

D = Analysis at a secondary dilution factor.

Only those analytes detected in at least one of the samples, and constituents of concern listed in the Draft Long-Term Monitoring Plan (EA 1998), are shown on this table.

	LT-1	ļ			QT-002	QS-002	QD-001
LT-1	DUP	LT-3	LT-4	LT-5 ^(a)	(μg/L)	(μg/L)	(μg/L)
LEMENTS B	Y EPA SER	ES 6000/700	METHODS	(mg/kg)			
909	3,510	5,260	322	2,650	NR	(<19.75U)	(<19.75U)
(<1.24U)	(<1.28U)	(<1.49U)	(<3.64U)	(<0.80U)	NR	(<1.98U)	(<1.98U)
14.2	12.3	16.6	64.5	1,690	NR	(<1.85U)	(<1.85U)
166	106	52.0	69.2	50.5	NR	1.9B*	1.0B*
1.1B*	1.4B*	2.0B*	0.11B*	0.21B*	NR	(<0.18U)	(<0.18U)
(<0.78U)	3.6B*	16.0	(<0.46U)	(<0.50U)	NR	(<0.25U)	(<0.25U)
10,800	13,500	12,100	4,460	4,530	NR	19.6B*	27.3B*
4.3B*	7.9B*	71.0	3.7B*	6.9B*	NR	0.80B*	0.68B*
86.8	170	17.2B*	10.3B*	6.3B*	NR	(<0.82U)	(<0.82U)
0.64B*	12.1B*	13.1B*	(<1.27U)	(<0.28U)	NR	(<0.69U)	(<0.69U)
483,000	102,000	70,800	475,000	331,000	NR	40.7B*	47.1B*
(<0.82U)	23.2	55.4	3.7B*	4.9	NR	3.0B*	2.7B*
687	1,390	1,440	319	1,300	NR	(<12.17U)	(<12.17U)
3,610	4,320	1,430	464	703	NR	0.44B*	0.61B*
0.17	0.56	1.7	0.17	0.05B*	NR	0.04B*	(<0.01U)
46.3	56.9	30.2	2.8B*	5.4B*	NR	(<0.77U)	(<0.77U)
561B*	900	728B*	273B*	620	NR	(<435.16U)	(<435.16U)
37.8	5.4B*	6.9B*	(<5.86U)	27.3	NR	(<3.19U)	(<3.19U)
1.2B*	4.4B*	2.8B*	0.53B*	0.51B*	NR	(<2.66U)	(<2.66U)
161	192	367	232	324	NR	166	202
20.8	(<2.08U)	(<2.42U)	(<5.92U)	17.4	NR	(<3.22U)	(<3.22U)
5.2B*	22.0	30.9	6.6B*	8.9B*	NR	0.50B*	(<0.46U)
102	52.8	23.5	16.9B*	16.6	NR	2.3B*	3.2B*
	909 (<1.24U) 14.2 166 1.1B* (<0.78U) 10,800 4.3B* 86.8 0.64B* 483,000 (<0.82U) 687 3,610 0.17 46.3 561B* 37.8 1.2B* 161 20.8 5.2B*	LT-1 DUP LEMENTS BY EPA SER 909 3,510 (<1.24U) (<1.28U)	LT-1 DUP LT-3 LEMENTS BY EPA SERIES 6000/700 909 3,510 5,260 (<1.24U) (<1.28U)	LT-1 DUP LT-3 LT-4 LEMENTS BY EPA SERIES 6000/7000 METHODS 909 3,510 5,260 322 (<1.24U) (<1.28U)	LT-1 DUP LT-3 LT-4 LT-5 ^(a) LEMENTS BY EPA SERIES 6000/7000 METHODS (mg/kg) 909 3,510 5,260 322 2,650 (<1.24U) (<1.28U) (<1.49U) (<3.64U) (<0.80U) 14.2 12.3 16.6 64.5 1,690 166 106 52.0 69.2 50.5 1.1B* 1.4B* 2.0B* 0.11B* 0.21B* (<0.78U) 3.6B* 16.0 (<0.46U) (<0.50U) 10,800 13,500 12,100 4,460 4,530 4.3B* 7.9B* 71.0 3.7B* 6.9B* 86.8 170 17.2B* 10.3B* 6.3B* 0.64B* 12.1B* 13.1B* (<1.27U) (<0.28U) 483,000 102,000 70,800 475,000 331,000 (<0.82U) 23.2 55.4 3.7B* 4.9 687 1,390 1,440 319 1,300 3,610 4,320 1,430 464 703 0.17 0.56 1.7 0.17 0.05B* 46.3 56.9 30.2 2.8B* 5.4B* 561B* 900 728B* 273B* 620 37.8 5.4B* 6.9B* (<5.86U) 27.3 1.2B* 4.4B* 2.8B* 0.53B* 0.51B* 161 192 367 232 324 20.8 (<2.08U) (<2.42U) (<5.92U) 17.4 5.2B* 22.0 30.9 6.6B* 8.9B*	LT-1 DUP LT-3 LT-4 LT-5 ^(a) (μg/L) LEMENTS BY EPA SERIES 6000/7000 METHODS (mg/kg) 909 3,510 5,260 322 2,650 NR (<1.24U) (<1.28U) (<1.49U) (<3.64U) (<0.80U) NR 14.2 12.3 16.6 64.5 1,690 NR 166 106 52.0 69.2 50.5 NR 1.1B* 1.4B* 2.0B* 0.11B* 0.21B* NR (<0.78U) 3.6B* 16.0 (<0.46U) (<0.50U) NR 10,800 13,500 12,100 4,460 4,530 NR 4.3B* 7.9B* 71.0 3.7B* 6.9B* NR 86.8 170 17.2B* 10.3B* 6.3B* NR 0.64B* 12.1B* 13.1B* (<1.27U) (<0.28U) NR 483,000 102,000 70,800 475,000 331,000 NR (<0.82U) 23.2 55.4 3.7B* 4.9 NR 687 1,390 1,440 319 1,300 NR 687 1,390 1,440 319 1,300 NR 3,610 4,320 1,430 464 703 NR 0.17 0.56 1.7 0.17 0.05B* NR 46.3 56.9 30.2 2.8B* 5.4B* NR 561B* 900 728B* 273B* 620 NR 37.8 5.4B* 6.9B* (<5.86U) 27.3 NR 1.2B* 4.4B* 2.8B* 0.53B* 0.51B* NR 161 192 367 232 324 NR 20.8 (<2.08U) (<2.42U) (<5.92U) 17.4 NR 5.2B* 22.0 30.9 6.6B* 8.9B* NR	LT-1 DUP LT-3 LT-4 LT-5 ^(a) (μg/L) (μg/L) LEMENTS BY EPA SERIES 6000/7000 METHODS (mg/kg) 909 3,510 5,260 322 2,650 NR (<19.75U) (<1.24U) (<1.28U) (<1.49U) (<3.64U) (<0.80U) NR (<1.98U) 14.2 12.3 16.6 64.5 1,690 NR (<1.85U) 166 106 52.0 69.2 50.5 NR 1.98* 1.1B* 1.4B* 2.0B* 0.11B* 0.21B* NR (<0.18U) (<0.78U) 3.6B* 16.0 (<0.46U) (<0.50U) NR (<0.25U) 10,800 13,500 12,100 4,460 4,530 NR 19.6B* 4.3B* 7.9B* 71.0 3.7B* 6.9B* NR 0.80B* 86.8 170 17.2B* 10.3B* 6.3B* NR (<0.82U) 0.64B* 12.1B* 13.1B* (<1.27U) (<0.28U) NR (<0.69U

NR = Analysis not required.

Table 19

March 1999

TABLE 19 SUMMARY OF LANDFILL GAS MONITORING CONDUCTED ON 24 NOVEMBER 1998 AT SITES 1 AND 3, NAVAL AIR STATION, BRUNSWICK, MAINE

Gas Vent Designation	Depth to Bottom (ft)	Pressure (in. H _g)	Percent Methane	Percent Oxygen	Percent Carbon Dioxide				
		Gas I	Probes						
GP-04	7.26	29.7	0.0	8.8	1.2				
GP-05	7.21	29.6	0.0	9.1	3.6				
GP-06	7.22	29.7	0.0	10.5	0.6				
Gas Vents									
GV-01	6.72	29.6	0.0	21.1	0.0				
GV-02	4.76	29.6	0.0	21.1	0.0				
GV-03	4.52	29.6	0.1	21.3	. 0.0				
GV-04	4.47	29.6	0.0	21.3	0.0				
GV-05	4.52	29.6	0.0	21.4	0.0				
GV-06	4.59	29.6	0.0	22.0	0.0				
GV-07	4.63	29.6	0.0	22.1	0.0				
GV-08	4.57	29.6	0.0	21.5	0.0				
GV-09	4.59	29.6	0.1	21.5	0.0				
GV-10	4.60	29.7	0.0	21.5	0.0				
GV-11	4.54	29.6	0.0	21.5	0.0				
GV-12	4.56	29.6	0.0	21.5	0.0				
GV-13	4.56	29.7	0.0	21.5	0.0				
GV-14 .	4.56	29.7	0.0	21.5	:0.0				
NOTE: Depth	to bottom mea	sured from t	op of polyvi	nyl chloride	coupling.				

Table 20 March 1999

TABLE 20 SUMMARY OF ANALYTICAL DATA QUALITY REVIEW

Sample Location	Findings of Laboratory Data Quality Review
	GROUND WATER
MW-1104	Result for methylene chloride is a false-positive.
MW-1104 DUP	Result for methylene chloride is a false-positive.
MW-205	Result for methylene chloride is a false-positive.
MW-219	Results for aluminum, iron, and magnesium are considered estimates of the reported values.
MW-219 DUP	Results for aluminum, iron, and magnesium are considered estimates of the reported values.
MW-224	Result for methylene chloride is a false-positive.
MW-225A	Result for trichloroethene is a false-positive.
MW-303	Results for trichloroethene, acetone, and methylene chloride are false-positives.
MW-305	Result for methylene chloride is a false-positive.
MW-306	Result for methylene chloride is a false-positive.
MW-308	Result for trichloroethene is a false-positive.
MW-311	Result for methylene chloride is a false-positive.
MW-311 DUP	Result for methylene chloride is a false-positive.
MW-313	Result for trichloroethene is a false-positive.
MW-319	Results for trichloroethene and methylene chloride are false-positives.
MW-1104	Result for methylene chloride is a false-positive.
MW-1104 DUP	Result for methylene chloride is a false-positive.
MW-331	Result for methylene chloride is a false-positive.
MW-332	Result for methylene chloride is a false-positive.
MW-332 DUP	Result for methylene chloride is a false-positive.
MW-NASB-212	Results for trichloroethene, acetone, and methylene chloride are false-positives.
P-106	Result for methylene chloride is a false-positive.
P-132	Result for methylene chloride is a false-positive.
GROUND-WATER DIRECT-PUSH	
DP-EP-01 (39-43 ft)	Result for 1,1,1-trichloroethane is a false-positive.
DP-EP-05 (22-26 ft)	Results for trichloroethene and 1,1-dichloroethene should be considered bias low.
SURFACE WATER	
SW-04	Results for total xylene, trichloroethene, acetone, methylene chloride, chromium, lead, mercury, and zinc are false-positives.
SW-07	Results for chromium, lead, mercury, and zinc are false-positives.
SW-08	Results for trichloroethene, acetone, methylene chloride, chromium, lead, mercury, and zinc are false-positives.
SW-08 DUP	Results for methylene chloride, chromium, lead, mercury, and zinc are false-positives.
SW-09	Results for trichloroethene, methylene chloride, chromium, lead, mercury, and zinc are false-positives.
SW-10	Results for trichloroethene and methylene chloride are false-positives.
SW-11	Result for trichloroethene is a false-positive.
SW-12	Results for total xylenes, tetrachloroethene, ethylbenzene, and trichloroethene are false-positives.
SW-13	Result for trichloroethene is a false-positive.
SW-13 DUP	Result for trichloroethene is a false-positive.
SW-14	Results for carbon disulfide, total xylenes, tetrachloroethene, ethylbenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, trichloroethene, and methylene chloride are false-positives.

Sample Location	Findings of Laboratory Data Quality Review
	LEACHATE STATION SEEP
SEEP-01	Results for aluminum, cobalt, iron, manganese, mercury, and zinc are considered estimates of the reported values.
SEEP-01 DUP	Results for aluminum, cobalt, iron, manganese, mercury, and zinc are considered estimates of the reported values.
SEEP-03	Result for trichloroethene is a false-positive.
SEEP-04	Results for 1,2-dichlorobenzene, 1,4-dichlorobenzene, and acetone are false-positives.
SEEP-05	Results for 1,2-dichlorobenzene, 1,4-dichlorobenzene, and acetone are false-positives.
	LEACHATE STATION SEDIMENT
LT-1	Results for mercury and sodium are false-positives. Results for acetone, aluminum, iron, and manganese are considered estimates of the reported values.
LT-1 DUP	Results for sodium are false-positive. Results for acetone, aluminum, iron, and manganese are considered estimates of the reported values.
LT-3	Result for sodium is a false-positive.
LT-4	Results for lead, mercury, and sodium are false-positives.
LT-5	Results for lead, mercury, and sodium are false-positives.
	QUALITY ASSURANCE/QUALITY CONTROL SAMPLES
QD-001	Result for methylene chloride is a false-positive.
QS-001	Results for acetone and methylene chloride are false-positives.
QS-003	Results for trichloroethene and methylene chloride are false-positives.
QT-002	Results for trichloroethene, acetone, and methylene chloride are false-positives.
QT-003	Results for trichloroethene, acetone, and methylene chloride are false-positives.

REFERENCES

- ABB Environmental Services, Inc. (ABB-ES). 1992a. Record of Decision for a Remedial Action, Sites 1 and 3. June.
- ABB-ES. 1992b. Record of Decision for an Interim Remedial Action, Eastern Plume. June.
- ABB-ES. 1994. Final Long-Term Monitoring Plan for Building 95, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine. August.
- Brunswick Municipal Sewer District. 1994. Agreement to Accept Treated Ground Water. December.
- EA Engineering, Science, and Technology. 1996. Final Report, Quarterly Monitoring Event 4 - November 1995, Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine.
- EA. 1998. Long-Term Monitoring Plan. Sites 1 and 3 and Eastern Plume, Naval Air Station, Brunswick, Maine. Prepared for Department of the Navy Northern Division, Naval Facilities Engineering Command. October. Draft.
- EA. 1999. Summary of Monitoring Well Installation and Direct-Push Ground-Water Sampling Conducted 13-30 October 1998 at Sites 1 and 3 and the Eastern Plume, Naval Air Station, Brunswick, Maine. Prepared for Department of the Navy Northern Division, Naval Facilities Engineering Command. January.
- State of Maine Department of Human Services. 1992. Summary of State and Federal Drinking Water Guidelines. Revised September. Bureau of Health - Environmental Toxicology Program. 23 October.
- U.S. Environmental Protection Agency (U.S. EPA). 1994. National Primary Drinking Water Standards. Office of Water, Washington, D.C. EPA 610-P-94-001. February. (Revised 1 July 1997.)

Appendix A

Field Monitoring and Sampling Forms

- A.1 Field Record of Well Gauging Forms
- A.2 Field Record of Well Gauging, Purging, and Sampling Forms
- A.3 Field Record of Surface Water and Sediment Sampling Forms
- A.4 Field Record of Seep Sampling Forms
- A.5 Field Record of Landfill Gas Monitoring

Appendix A.1 Field Record of Well Gauging Forms

Project Name: LTMP Event 13 Novamber 1998	Sites 1+3	Project No:	29 60047.	Date: 111319	8
Weather/Temperature: 01 excast, 450					·
EA Personnel: SC, FV		Equipment:	Slope indicator	TVA-1000	

	Labeled/	Well	VOCs Concer	tration (ppm)	Casing/Seal	Protective Casing Elevation	PVC Casing Elevation	Depth to	Measured Well	Water Table Elevation
Well No.	Capped	Locked	Air Ambient	Well Mouth	Condition	(ft MSL)	(ft MSL)	Water (ft)	Depth (ft)	(ft MSL)
EP-16	44	4	0	0	(Lood		58.92	34,50	49,90	24.42
MW-2164	44	٦	0	3280	لصص		71.17	37,68	46.96	33,49
mw-211A	44	4	0	15	(100cl)		65.59	24,40	137.02	41,19
MW-211B	47	4	0	88	Good		65.44	30,14	36.50	35,30
MWZIOI	44	٦	0		Good		61.05	(1,88	30.00	49.17
mw-201R	7 4	4	0	0	Good		58,88	10.86	39.51	48.02
MW233R	44	٦	0	0	Good		63,94	30.57	50.49	33.37
MW 215R	.44	4.	0	2.1%	Good		62.26	29,38	49.95	32,88
MW202A	44	Ч	0	0	Good	L	52,40	20,17	31.09	32,23
MWY02B	44	4	0	0	Good		53.04	dry	17,93	
mw-203	44	ዣ	\circ	0	لمصما		52,75	31.69	42.04	2106
mw.218	44	7	0	0	Good		54.16	34.03	53.54	20.13
mw.204	44	4	0	0	Good		50.50	30,03	37.18	20.47
mw-219	44	٦	0	\bigcirc	boar		51.87	30.53	71.82	21.34
2 w-6	44	4	0	O	Good		67.74	21,21	39.05	3653
E W-7	44	4	0	0	Good		51.13	27,18	5 0.55	23,95
mw-234R	44	7	0	1.1%	Good		68.55	35,30	59.52	33.25
NOTE: MSI = Mea	I DVIC	- Debesdard of the	ide. NOC = V-1-41		4.		<u> </u>		-	

Project Name: LTMP Event 13 November 1998	Sites 1+3 Project No: 29600 \$7 7503 Date: 11/3/98
Weather/Temperature: OverCaSt, 450	
EA Personnel: SC FV	Equipment: Slope indicator TVA-1000

Well No.	Labeled/ Capped	Well Locked	VOCs Concent	tration (ppm) Well Mouth	Casing/Seal Condition	Protective Casing Elevation (ft MSL)	PVC Casing Elevation (ft MSL)	Depth to Water (ft)	Measured Well Depth (ft)	Water Table Elevation (ft MSL)
MW 232A	44	Y		980	Good	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	71.18	37,93	54,76	33,25
MW217B	44	4	0	53	Good		61.25	2647	34,60	34.78
MW217A	4 4	4	\circ	0	Lood		61.78	29.26	44.56	32,52
mw 220	44	4	Ö	0	Good		47,20	27.63	49.87	19.57
MWZIOA	99	9	0	0.	Good		52.17	18,94	105.60	33,23
MUZIOB	99	7	0	65	Good		54,72	30.44	26,40	2428
5920	44	4	0	3900	(eccol		69,55	35,81	47,25	33,74
ED-19	44	4	0	. ()	Good		68.22	34.69	47.30	33,53
EP-18	44	4	0	0	Good		68.58	36.08	38,10	32.50
EP-17	44	4	6	0	Good		69,73	36.22	42.85	33.51
MW210R	44	4	0	0	Good		5 3,90	21,94	112.00	33.96
MW240	44	4	0	0	Good		52.21	31,21	42,60	21.00
WW 3 .0										

NOTE: MSL = Mean sea level; PVC = Polyvinyl chloride; VOC = Volatile organic compounds.

Project Name: LTMPEVEN+13 NOV	1998 Eastern Pluma	Project No: 29 600,47, 7503	Date: 1/3/98
Weather/Temperature: OV ovcast 45°			,
EA Personnel: SC FV		Equipment: Slope indicator, T	VA-1000

Well No.	Labeled/ Capped	Well Locked	VOCs Concentration (ppm) Air Ambient Well Mou	Casing/Seal	Protective Casing Elevation (ft MSL)	PVC Casing Elevation (ft MSL)	Depth to Water (ft)	Measured Well Depth (ft)	Water Table Elevation (ft MSL)
mw310	44	4	0 0	Good	(1.1.02)	53.39	2899	72.83	24.40
MW 206A	44	4	0 0	Good		43.02	19.90	74,36	23.12
MW:206B	7 7	7	0	boar		42,77	19.72	27.17	23.05
MW-225A	77	4	0 0	bool		45.95	20.76	76.03	25.19
MWZZSB	77	4	0	Cood		46,25	21.70	42.60	24.55
MW-105A	44	4	0	Good		24,19	2,60	46.87	21.59
MW-105B	47	4	0 ()	Good		24,55	8,00	22.91	16.55
MW-231A	44	9	0 0	Good		45,41	20,79	62.42	24.66
MW231B	47	9	0 0	Good		46,31	25,10	57.86	21.21
Mw-236A	44	4	\circ	Good		36,32	15.52	82.08	20,80
MW/318	44	4	0 0	bood		24,28	5.78	25.14	18.50
MW/229A	44	4	\bigcirc	licor		33.83	13.66	64.97	20.17
mw 229B	44	4	\circ	Good		30.08	14.89	32.70	15.19
mw/313	44	4		Good		21.39	9.08	37.14	12.31
ZA1	44	4	0 0	Good		31.67	11,66	100.51	20.01
500	44	7	0 0	Lead		29,74	10.01	99.00	19.73
2 P-3	44	7	0 0	Good		27.91	7,45	89,21	20.46
NOTE: MSL = Mea	NOTE: MSL = Mean sea level; PVC = Polyvinyl chloride; VOC = Volatile organic compounds.								

Project Name: LTMP EVENTIB NOV1998	Eastma Plume Project No: 29600477503 Date: 11/3/98	
Weather/Temperature: OVerCaSt, 450		
EA Personnel: SC, FV	Equipment: Slope indicator TVA-1000	

	I ababad/	Well	VOCs Concen	tration (ppm)	Casing/Seal	Protective Casing Elevation	PVC Casing Elevation	Depth to	Measured Well	Water Table Elevation
Well No.	Labeled/ Capped	Locked	Air Ambient	Well Mouth	Casing/Sear Condition	(ft MSL)	(fl MSL)	Water (ft)	Depth (ft)	(ft MSL)
ZW-1	47	7	\bigcirc	0	bood		25.34	10.48	99.66	14.86
mw205	7	4	0	0	(1000d)		45.99	2424	25.15	21.75
2w.2	77	. 4	0	0	(rood)		31.63	12.07	90,86	19.56
20-4	44	4	\bigcirc	\bigcirc	bood		32.59	9.79	91.11	22.80
EP-5	44	4	α	0	Good		34.61	10.81	79.85	23.80
2P.6	47	7	Ŏ	()	(soor)		40.14	15,73	83.51	24,41
MW-207A	44	9	0	0	Good		24.06	0,79	73.22	23,27
MW-207B	44	Y	O	0	Good	·	22.90	5.76	9,57	17.14
Mw-311	44	4	0	0	and		21.48	14,33	55.78	7,15
P-112	44	4	0		Good		41.12	11.24	16.41	29.88
Mw-319	44	9	0	Ó	Cional		40.16	15,81	72.44	24.35
Mw-106	99	9	0	Ö	and		51.26	25.17	37,27	26.09
Mm-708	99	4	0	0	Good		49,40	23,39	103.33	26.01
Ew-3	44	4	0	0	Good		41.18	34,60	67,64	6.58
mw-223	44	9	6	Ó	and		53.71	27,00	42,61	26,71
P-124	94	.4	Ö	6	Good		51.12	DRY	23.25	
Zw.2A	99	4	0	0	Good		22,27	30,22	66.00	-7.95

NOTE: MSL = Mean sea level; PVC = Polyvinyl chloride; VOC = Volatile organic compounds.

Ew-1 10gpm Ew-2 11gpm Ew3 21gpm

Page $\underline{2}$ of $\underline{5}$

Project Name: LTMP Event 13 Wow 1998 Eastern Plume	Project No: 29605.47.7503	Date: 11/3/98
Weather/Temperature: OV + Ca St. 43°		
EA Personnel: SC FV	Equipment: TVA-1000 Slope	indicator

			VOCs Concen	ntration (ppm)		Protective Casing	PVC Casing Elevation	Doroth to	Measured Well	Water Table Elevation
Well No.	Labeled/ Capped	Well Locked	Air Ambient	Well Mouth	Casing/Seal Condition	Elevation (ft MSL)	(ft MSL)	Depth to Water (ft)	Depth (ft)	(ft MSL)
MW209	44	4	0	G	Cood		54.84	27,54	32.38	27,30
MWZZZ	47	4	0	G	Load		57,43	29.33	45.34	28,10
P-110	44	7	0	0	Good		56.70	DRY	24.14	
Mw:224	4.4	7.	0	Ö	Good		57.63	29.4.1	46.95	28,22
2P-7	99	4	0	0	Cecood		48,49	22,21	70,20	26.28
EP8	47	7	0	0	Crood	·	47.31	20,50		26.81
Zw.4	44	4	0	0	Good		37,13	27,35	69,37	9,78
EP-9	47	7	0	\bigcirc	Good		37.84	10.02	62,46	27.82
EP-10	177	7	0	0	Good		37,78	10.48	58,00	27,30
€ P-11	44	4	0	\bigcirc	Load		41.59	12,34	65.03	29,25
٤ p-12	44	7	0	\bigcirc	Good		49.38	19.69	69.61	29.73
mw-307	44	4	- 0	C)	Good		62.70	15,80	22.21	46.90
ξω-5	44	4	Ŏ	Ö	aoal		36.25	26.86	84.99	9,39
P-105	99	4	0	C_2	Good		42.08	10,00	70,35	32.08
.p-106	44	4	0	0	Cood		38,83	11.13	71.06	27.70
£P-13	49	4	G	G	Cood		38.56	6.88	71.03	32,08
EP-14	99	4	0	0	Crowd		43.46	11.95	80.05	3151

NOTE: MSL = Mean sea level; PVC = Polyvinyl chloride; VOC = Volatile organic compounds.

EW.4 27 gpm EW.5 18 gpm Page $\frac{3}{2}$ of $\underline{5}$

Project Name: LTMP Event 13 Nov 1998 Eastern Plume	Project No: 29600.47,7503 Date: 1/13/98
Weather/Temperature: OV excast 45	
EA Personnel: SC FV	Equipment: 5lope indicator, TVA-1000

	Labeled/	Well	VOCs Concer	tration (ppm)	Casing/Seal	Protective Casing Elevation	PVC Casing Elevation	Depth to	Measured Well	Water Table Elevation
Well No.	Capped	Locked	Air Ambient	Well Mouth	Condition	(ft MSL)	(ft MSL)	Water (ft)	Depth (ft)	(ft MSL)
2 P.15	7	9	0	0	(uccd)		45.37	15,20	82.68	30.17
P-132	49	9	\bigcirc	0	Cood		42.95	17,90	32,46	25.05
mw ² 03	47	. 4		\bigcirc	Good		44,28	12.14	71.62	32.14
mw.305	47	4	0	0	Lecool		43.09	12,26	54.12	30.83
MW. NASB	49	9	0	0	Crosol	·	41,64	9,55	67,34	32.09
mw-306	47	4	0 .	0	Load		52.12	18,84	56.98	33,28
P-103	44	4	0	\circ	Cross		60.35	24.55	29,05	35,80
MW-1104	49	9	0	0	Ciccol		60.09	11.62	27.55	48,47
P-111	49	4	0	\bigcirc	(,000		31.48	4.52	9,99	2696
MW/308	44	9	0	\overline{O}	Good		37,70	5.79	72.85	31.95
Mw309A	49	4	10	$\overline{\bigcirc}$	(iaca)		22.84	+3.47	72.71	26.31
MW-309B	1, 4		0	Ŏ	uad		32.32	1.79	59.43	20.53
Mw-312	44	+ +	0	$\overline{\circ}$	Good		35,97	11.83	71.15	24,14
MW 3161A	44	5	0	0	Lood		5371	20,58	103.10	33.13
MW31617	99	+ +	0		Good		54.40	1029	57,85	44,11
MW-317A	77	1-4-	0	0	Good		71,35	13.06	120,79	58,29
MW-317B	7 7	1-4-	0	_ 0 _	Good		70,10	11.86	96,95	5824
MWBID	1 7				100000					

NOTE: MSL = Mean sea level; PVC = Polyvinyl chloride; VOC = Volatile organic compounds.

Project Name: LTMP Event 13	Nov 1998	EasternPlume	Project No: 29600,47,7503	Date: 11/3/98
Weather/Temperature: OU & VCa St	५९०			
EA Personnel: SC, FV			Equipment: Slope indicator,	TVA-1000

Well No.	Labeled/ Capped	Well Locked	VOCs Concer	stration (ppm) Well Mouth	Casing/Seal Condition	Protective Casing Elevation (ft MSL)	PVC Casing Elevation (ft MSL)	Depth to Water (ft)	Measured Well Depth (ft)	Water Table Elevation (ft MSL)
P-121	47	9	\bigcirc	0	Good		50,78	15.75	17,35	35.03
P-123	44	7	0	0	Cicco		54.19		Blocked	
Mw 330	77	7	G	\bigcirc	Good		35.71	6,96	33.40	2875
mw-331	44	7	\mathcal{O}		Croad		30,51	3,85	53.80	26.69
mw/332	74	7	0	\bigcirc	Good		25,33	12.20	18,60	13.13
mw-333	47	J	6	\circ	Good		27.25	11,60	40.00	15.65
Mw/334	44	7	0	\bigcirc	Good		3093	13.90	41,60	17.03
MANAGERANA										
								<u> </u>		
								·		20.16
GP-1							31.10	3.00		28.10
CP-2							23.92	+1.65		25.57
GP-3							27.33	3.57		23.76
GP-4							18,39	2.75		15.64
GP-5							23,38	5,45		13.93
GP-6							15,22	8.80	<u> </u>	6,42
·										
NOTE: MSL = Mea	n sea level: PVC	= Polyvinyl chlor	ride; VOC = Volati	le organic compou	nds.			······································		

Page <u>5</u> of <u>5</u>

Appendix A.2

Field Record of Well Gauging, Purging, and Sampling Forms

SITE NAME: WELL I.D.: WELL CONDITION:	Sifes 1e3 202A Good	PROJECT NUMBER: WELL LOCK STATUS: WEATHER:	2960.47 7503 <u>good</u> (nencost, 305,
GAUGE DATE: SOUNDING METHOD: STICK UP/DOWN (ft):	store indicutu 2:11	GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.):	1445 Toc 2"
PURGE DATE: PURGE METHOD: AMBIENT AIR VOCs (ppm)	11 4 98 Law Flow Start: 0.0 End: 0.0	PURGE TIME: FIELD PERSONNEL: WELL MOUTH VOCs (ppm):	14 47 KS 33A. Start: C C End: 6.0
	WELL	VOLUME	•
A. WELL DEPTH (ft):B. DEPTH TO WATER (ft):C. LIQUID DEPTH (ft) (A-B)	31.09 D. 20.18 E. 10.91 F.	WELL VOLUME/FT (L): WELL VOLUME (L) (C*D): THREE WELL VOLUMES (L) (E*3):	0.605

Parameter	Beginning	1	2	3	4	5
Time (min)	1448	1453	1458	1503	1508	1513
Depth to Water (ft)	30.18	22.26	22.32	22,34	21.18	22.61
Purge Rate (L/min)	.3	.3	.3	,a	12	, 2
Volume Purged (L)	0.3	1.8	3.3	4.8	5.3	1863
pН	3.67	5.15	5.51	5,58	5.64	5.61
Temperature (°C)	10,92	10.99	13.87	15.12	15,02	14,95
Conductivity (µmhos/cm)	449	375	497	563	576	5£3
Dissolved Oxygen (mg/L)	5.83	4.01	2.61	1,93	1.76	1.68
Turbidity (NTU)	60.0	20	19	40	37	28
Eh (mv)	41.2	115	117	107	114	114

TOTAL QUANTITY OF WA	TER REMOVED (L): _	13.7	
SAMPLERS:	KS, BA	SAMPLING TIME (START/END)	: <u>1535 - 1550</u>
SAMPLING DATE:	11/4/98	DECONTAMINATION FLUIDS U	SED: DI
SAMPLE TYPE:	GRAB	SAMPLE PRESERVATIVES:	HCL, HNOZ
SAMPLE BOTTLE IDs:	BNH3-SI-MOC	7 YOCCS	
SAMPLE PARAMETERS:	VOC, TAL	elements	
COMMENTS AND OBSERV	VATIONS: have t	adjust pup to man	intown flew
Trouble with YS	I all paramet	esstable with the	exception of Turbidity
		11	
	•		

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING (OVERFLOW PAGE)

Site Name: Sites 10-3	Project No.: 29600.47	Date: ///4/98
Well ID: 202A	Field Personnel: KS B	M

Parameter	6	7	8	9	10	11
Time (min.)	1518].		
Depth to Water (ft)	27.28					
Purge Rate (L/min)	,2					
Volume Purged (L)	4.3					
pH	5.66					
Temperature (°C)	15.68					
Conductivity (µmhos/cm)	564					
Dissolved Oxygen (mg/L)	1,93					
Turbidity (NTU)	15					
Eh (mv)	110					

Parameter	12	13	14	15	16	17
Time (min)	,					
Depth to Water (ft)				:		
Purge Rate (L/min)						
Volume Purged (L)						
pН						
Temperature (°C)						
Conductivity (µmhos/cm)						·
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)						

COMMENTS AND OBSERVATIONS	
	 ٠.

SITE NAME: WELL I.D.: WELL CONDITION:	Sites 1+3 Mw-203 Good	PROJECT NUMBER: WELL LOCK STATUS: WEATHER:	29600.47,7503 10cked Overcast 400
GAUGE DATE: SOUNDING METHOD: STICK UP DOWN (ft):		GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.):	
PURGE DATE: PURGE METHOD: AMBIENT AIR VOCs (ppm)	1/4/98 Low Flow Start: () End: O	PURGE TIME: FIELD PERSONNEL: WELL MOUTH VOCs (ppm):	1433 12 14, SC Start: O End: O
	WELL	VOLUME	· -
A. WELL DEPTH (ft): B. DEPTH TO WATER (ft): C. LIQUID DEPTH (ft) (A-B)	42.04 D. 31.69 E. 10.35 F.	WELL VOLUME/FT (L): WELL VOLUME (L) (C*D): THREE WELL VOLUMES (L) (E*3):	0.605 6.26 18.78

Parameter	Beginning	1	2	3	4	5
Time (min)	1438	1\$43	1448	1453	1458	1503
Depth to Water (ft)	31.74	31.74	31.72	31.72	31.72	31.72
Purge Rate (L/min)	0,2	0,2	0.2	0.2	0.2	0.2
Volume Purged (L)	0.6	1.6	2.6	3.6	4.6	5.6
рН	5.99	5.92	5,98	5,99	5,98	598
Temperature (°C)	10.18	11.17	13.02	13.63	13.57	13.62
Conductivity (µmhos/cm)	327	679	757	796	790	805
Dissolved Oxygen (mg/L)	5.79	8.16	8.31	8,35	8.36	8.35
Turbidity (NTU)	28/	_7	2	1	1	1
Eh (mv)	60	15	55	88	103	109

TOTAL QUANTITY OF WA	ATER REMOVED (L):		
SAMPLERS:	PH,5C	_ SAMPLING TIME (START/END) :	151 0 /1513
SAMPLING DATE:	11/4/98	DECONTAMINATION FLUIDS USED:	nony
SAMPLE TYPE:	Grab	_ SAMPLE PRESERVATIVES:	HCL nitricand
SAMPLE BOTTLE IDs:	BN-13-51-	MW 005	
SAMPLE PARAMETERS:	VOC, TH	AL SIOMONTS	
COMMENTS AND OBSERV	/ATIONS:Cle	and out cup @ 1440	
Contains			
ph check ok			
COMMENTS AND OBSERV	/ATIONS:Cle		

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING (OVERFLOW PAGE)

Site Name: 5,+5, 1+3	Project No.: 29600477503 Date: 11/4/98
Well ID: Mw-203	Field Personnel: RHSC

Parameter	6	7	8	9	10	11
Time (min.)	1508					
Depth to Water (ft)	31.72					
Purge Rate (L/min)	0.2					
Volume Purged (L)	6.6					
pН	5.99					
Temperature (°C)	13.66					
Conductivity (µmhos/cm)	799					
Dissolved Oxygen (mg/L)	8.31					
Turbidity (NTU)	2					
Eh (mv)	111					

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						
Volume Purged (L)						
pH		·				
Temperature (°C)						
Conductivity (µmhos/cm)				·		
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)		·				

COMMENTS AND OBSERVATIONS	 	
	-	

WE WE GA SO	UGE DATE: UNDING METHOD:	5,+05 113 MW. 204 good 11/4/98 Blope indicate	WELL LOCK STATUS: WEATHER: GAUGE TIME:			Over	29600.47,7503 locked Overcast, 40° 1250 TOC	
STI	CK PDOWN (ft):	1.74		L DIAMETE			2	
PU	RGE DATE: RGE METHOD: BIENT AIR VOCs (ppm) Star	11/4/98 1000 F1000 t: 0 End: 0	FIEL	PURGE TIME: FIELD PERSONNEL: WELL MOUTH VOCs (ppm):				
		<u>w</u>	ELL VOLUN	(E				
B.	A. WELL DEPTH (ft): 37.18 B. DEPTH TO WATER (ft): 30.08 C. LIQUID DEPTH (ft) (A-B): 7.10 D. WELL VOLUME/FT (L): 4.30 E. WELL VOLUME (L) (C*D): 4.30 F. THREE WELL VOLUMES (L) (E*3): 12.9							
	Parameter	Beginning	1	2	3	4	5	
	Time (min)	1255	1300	1305	1308	1308		
	Depth to Water (ft)	30.08	30.08	30.08	30.08	30.08		
	Purge Rate (L/min)	0.2	0.2	0.2	0.2	0.2		
	Volume Purged (L)	0.6	1.6	2.6	3,2	3, 8.		
	pН	6.42	642	6.42	6.42	6.42		
	Temperature (°C)	9.36	9.68	10.41	10.61	10.79		
	Conductivity (µmhos/cm)	47	52	51	51	53		
	Dissolved Oxygen (mg/L)	11.13	11.10	11.10	11.07	11.08		
	Turbidity (NTU)	97	25	5	4	2		
ł	Eh (mv)	175	163	158	155	155		
TOT	AL QUANTITY OF WATER RE	MOVED (L):	5. <u>2</u>					
		SC SA		MF (START/	FND) ·	1315	1/3/8	
SAN		uG®	CONTAMIN			_ non		
			MPLE PRES				nitricació	-
		N-13-51-M4		ERVAIIVES); 	1,02,7	TITTICACIO	-
	IPLE PARAMETERS: VX			4.5				_
		•			0 1			_
· · ·	IMENTS AND OBSERVATIONS	- Cunta	1116K13 6	<u>· wa</u>	XX T	van thr	aghplant	
	· · · · · · · · · · · · · · · · · · ·		:					—

B. DEPTH TO WATER (ft):

C. LIQUID DEPTH (ft) (A-B):

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING

SITE NAME: WELL I.D.: WELL CONDITION:	SHE 113 MW-217B good	PROJECT NUMBER: WELL LOCK STATUS: WEATHER:	2960,47,7503 acod Cloudy ±40
GAUGE DATE: SOUNDING METHOD: STICK UP DOWN (ft):	11/4/98 Super Indicator 1:30	GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.):	1250 TOC
PURGE DATE: PURGE METHOD: AMBIENT AIR VOCs (ppm)		PURGE TIME: FIELD PERSONNEL: WELL MOUTH VOCs (ppm):	1255 1318A Start: 9 End: 6
	WELL V	OLUME	•
A. WELL DEPTH (ft):	34.60 D. V	VELL VOLUME/FT (L):	12 0,65

E. WELL VOLUME (L) (C*D):

F. THREE WELL VOLUMES (L) (E*3):

				···		
Parameter	Beginning	1	2	3	4	5
Time (min)	1300	1305	1310	1315	1320	1325
Depth to Water (ft)	<i>a</i> 7.3a	ור.רב	28.03	28.30	28.30	28.19
Purge Rate (L/min)		12	, 2	, a	٠, ي	10
Volume Purged (L)	1,0	2.0	3.0	4.0	5,0	6.0
pH	5.10	5.94	611	4,98	6.04	6.14
Temperature (°C)	10.34	14.08	18,22	18.00	18,07	17.99
Conductivity (µmhos/cm)	1191	1776	2093	2236	2321	2329
Dissolved Oxygen (mg/L)	1.01	4,20	0.87	18198	.67	0.56
Turbidity (NTU)	156	276	160	240	3021	633
Eh (mv)	410	1.1	-13.3	-19.2	-327	-41.2

TOTAL QUANTITY OF WA	TER REMOVED (L): _	20	
SAMPLERS:	KS BA	SAMPLING TIME (START/ENI): <u>1422 - 14</u> 38
SAMPLING DATE:	1114198	DECONTAMINATION FLUIDS	USED: DI
SAMPLE TYPE:	<u>Grab</u>	SAMPLE PRESERVATIVES:	HCL, HWO3
SAMPLE BOTTLE IDs:	BN-13-S1-N	12003	
SAMPLE PARAMETERS:	VOC TALE	lements	
COMMENTS AND OBSERV			Leeping flow Stead 1
had to adjust	Flow constar	1+14	

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING (OVERFLOW PAGE)

Site Name: 51-16-14-3	Project No.: 24600, 47.7503 Date: 1114198
Well ID: MW-217B	Field Personnel: KS \BA

Parameter	6	7	8	9	10	11
Time (min.)	1330	1335	1345	1350	1355	1400
Depth to Water (ft)	28.19	28.20	28.32	28.32	28.70	28.70
Purge Rate (L/min)	.2	٠, ك	.2	, 7	. 2	: 2
Volume Purged (L)	7.0	8,0	10.0	11.0	12.0	13.0
рН	6.17	6.06	5.85	6.14	6.07	6.19
Temperature (°C)	18.76	19.84	3 0,38	21.03	17.94	17.04
Conductivity (µmhos/cm)	24.85	2554	2611	2643	2465	2415
Dissolved Oxygen (mg/L)	0.49	2,29	1.16	0.77	0.81	0.66
Turbidity (NTU)	829	31.7	10	126	<i>25</i> 8	185
Eh (mv)	-52,3	-37.4	-41	-52	-58	-W+

Parameter	12	13	14	15	16	17
Time (min)	1403	1406	1409	1412		
Depth to Water (ft)	28.70	28.76	28.70	38.65		
Purge Rate (L/min)	1,2	(2)	,2	۵,		
Volume Purged (L)	13.60	14.2	14.8	15.4		
pН	6.19	6.16	619	*		
Temperature (°C)	19.17	19.64	19.12			
Conductivity (µmhos/cm)	₹538	2559	2529			
Dissolved Oxygen (mg/L)	0.54	0.40	1.98			
Turbidity (NTU)	231	474	291		•	
Eh (mv)	-76	-85	-54			

to recrarge will sample after recherge.

A. WELL DEPTH (ft):

B. DEPTH TO WATER (ft):

C. LIQUID DEPTH (ft) (A-B):

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING

SITE NAME: WELL I.D.: WELL CONDITION:	5,105,1+3 MW-218 GODA	PROJECT NUMBER: WELL LOCK STATUS: WEATHER:	29600.47.7503 10CKd Overcast, 40°
GAUGE DATE: SOUNDING METHOD: STICK (IP)DOWN (ft):	Slope inaccorty 2.101	GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.):	1330 100 2
PURGE DATE: PURGE METHOD: AMBIENT AIR VOCs (ppm)	11/4/98 	PURGE TIME: FIELD PERSONNEL: WELL MOUTH VOCs (ppm):	
	WELLY	OLUME	•

D. WELL VOLUME/FT (L):

E. WELL VOLUME (L) (C*D): F. THREE WELL VOLUMES (L) (E*3):

Parameter	Beginning	1	2	3	4	5
Time (min)	1340	1345	1350	1355	1400	1405
Depth to Water (ft)	37.51	38,10	38,73	39.15	39.40	39.62
Purge Rate (L/min)	0.2	0.2	0.2	0,2	0.2	0.2
Volume Purged (L)	1.0	2.0	3,0	4.0	5.0	6.0
рН	7.86	7.86	7.42	7.62	7.67	7.67
Temperature (°C)	10.16	10.15	10.96	11.09	11.53	12.02
Conductivity (µmhos/cm)	878	863	812	810	816	826
Dissolved Oxygen (mg/L)	1.15	1,13	1,18	1.08	1.02	0,83
Turbidity (NTU)	81	79	42	38	33	31
Eh (mv)	-182	-179	-167	-160	-160	-17/

TOTAL QUANTITY OF WA	ATER REMOVE	D (L):		
SAMPLERS:	RH, SC	SAMPLING TIME	(START/END) :	1430/1433
SAMPLING DATE:	11/4/98	DECONTAMINAT	ION FLUIDS USED:	None
SAMPLE TYPE:	Grab	SAMPLE PRESERY	VATIVES:	HCL nitricaca
SAMPLE BOTTLE IDs:		-SI- MW006		
SAMPLE PARAMETERS:	VOC	TALSlements		
COMMENTS AND OBSERV	/ATIONS:	Containenzal	water from	through plant
_ ph cheer ok	·			J 1

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING (OVERFLOW PAGE)

Site Name: 51405 113	Project No.: 2960047755 Date: 11/4/98
Well ID: MW-218	Field Personnel: RI+SC

Parameter	6	7	8	9	10	11
Time (min.)	1410	1415	1420	1425		11
Depth to Water (ft)	39.75	40.53	40.98	41.41		,
Purge Rate (L/min)	0.2	0.2	0.2	0.2		
Volume Purged (L)	7.0	8,0	9.0	10.0		
pН	7,59	7.62	7.63	7.56		
Temperature (°C)	13.69	13.67	13.79	14.43		
Conductivity (µmhos/cm)	864	886	876	882		
Dissolved Oxygen (mg/L)	1.14	0.97	0.89	0.88		
Turbidity (NTU)	21	19	17	18		
Eh (mv)	-187	-186	-187	-189		

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						
Volume Purged (L)						
рН						
Temperature (°C)						
Conductivity (µmhos/cm)						·
Dissolved Oxygen (mg/L)						
Turbidity (NTU)			·			
Eh (mv)						

COMMENTS AND OBSERVATIONS		
	· · · · · · · · · · · · · · · · · · ·	

			TUNGING	r, AND SA	MIPLING	7				
WI	TE NAME: ELL I.D.: ELL CONDITION:	M	W-219	WEI	JECT NUME LL LOCK STA ATHER:		10	00:47.750 ocked rast, 45		
SO	AUGE DATE: OUNDING METHOD: ICK (P)DOWN (ft):		1/4/98 ope inacca	MEA	JGE TIME: ASUREMENT LL DIAMETE					
PU	PURGE DATE: PURGE TIME: PURGE									
			<u>w</u>	ELL VOLUN	Æ	,		•		
A. B. C.	A. WELL DEPTH (ft): 7182 D. WELL VOLUME/FT (L): 0,605								- -	
	Parameter		Beginning	1	2	3	4	5		
	Time (min)		1148	1152	1156	1200	1205.	1210		
	Depth to Water (ft)	· :	30.61	30.61	30.61	30.61	30.61	30.61	ĺ	
	Purge Rate (L/min)		0.2	0.2	0.2	0.2	0.2	0,2		
	Volume Purged (L)		0.6	1.4	2.2	3.0	4.0	5.0		
	pН		5.67	5.94	6,17	6.22	6.22	6.21		

Time (min)	1148	1152	1156	1200	1205.	1210
Depth to Water (ft)	30.61	30.61	30.61	30.61	30.61	30.61
Purge Rate (L/min)	0.2	0,2	0.2	0.2	0.2	0,2
Volume Purged (L)	0.6	1.4	2.2	3.0	4.0	5.0
pH	5.67	5.94	6,17	6.22	6.22	6.21
Temperature (°C)	9.01	8.95	8.93	9.43	10.11	10.49
Conductivity (µmhos/cm)	119	160	113	99	101	104
Dissolved Oxygen (mg/L)	8.09	7,79	7.97	7.91	7.83	7.76
Turbidity (NTU)	158	172	306	278	168	134
Eh (mv)	1961	256	242	231	216	197

TOTAL QUANTITY OF WA	ATER REMOVED (L): <u>/</u>			•	
SAMPLERS:	RHSC	SAMPLING	TIME (START	(/END) :	1245/	1249
SAMPLING DATE:	11/4/98	DECONTAI	MINATION FLU	JIDS USED:	hone	· .
SAMPLE TYPE:	_Grab_	SAMPLE PI	RESERVATIVE	S:	HCL nitri	
SAMPLE BOTTLE IDs:	BN-13-51	1-MW002	1245	DUD	BN-13-51-1	nwx10/
SAMPLE PARAMETERS:	Voc. T	AL me	ta13	<u> </u>		
COMMENTS AND OBSER	VATIONS:	Hainerize	dwater	trant	hrough plan	nt.
				···	<u> </u>	
	·	· · · · · · · · · · · · · · · · · · ·				
ph chees	<u>ok</u>					

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING (OVERFLOW PAGE)

Site Name: Sites 143	Project No.: 2960047.7503 Date: 11/4/98
Well ID: MW219	Field Personnel: 5 YC, RH

Parameter	6	7	8	9	10	11
Time (min.)	1215	1220	1225	1230	1235	1240
Depth to Water (ft)	30,61	30.61	30.61	30.61	30.63	30.63
Purge Rate (L/min)	0.2	0.2	0.2	0.2	0,2	0,2
Volume Purged (L)	6.0	7.0	8,0	9.0	10.0	11.0
рН	6.21	6.20	6.21	6.20	6.19	6.19
Temperature (°C)	10.70	10.95	11.03	11:09	11.19	11.23
Conductivity (µmhos/cm)	100	106	100	104	105	101
Dissolved Oxygen (mg/L)	7.74	7.63	7.65	7.60	7.64	7.59
Turbidity (NTU)	380	52	41	37	40	39
Eh (mv)	180	17/	168	168	169	169

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)				·		
Purge Rate (L/min)						
Volume Purged (L)						
pН						
Temperature (°C)					· · · · · · · · · · · · · · · · · · ·	
Conductivity (µmhos/cm)						
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)	·					

COMMENTS AND OBSERVATIONS	<u></u>

WI	TE NAME: ELL I.D.: ELL CONDITION:	15 Brunswa MW-240 6000	WEI	JECT NUMB LL LOCK STA ATHER:		391 	LXXX.Y
şo	AUGE DATE: UNDING METHOD: ICK UP DOWN (ft):	che Indian	<u>ù 7</u> MEA	IGE TIME: ASUREMENT LL DIAMETE		14 - 14 - 3'	15
PU	RGE DATE: RGE METHOD: IBIENT AIR VOCs (ppm) Start:	1112/98 -000 Flow 010 End: 010	FIEL	GE TIME: D PERSONN L MOUTH V			118 3 BA 10 End: 6,0
· ·	1	w	ELL VOLUM	Œ			
A. B. C.	WELL DEPTH (ft): DEPTH TO WATER (ft): LIQUID DEPTH (ft) (A-B):	<u> </u>	E. WELL	VOLUME/FT VOLUME (L) WELL VOL		_6	.685 0.92 10.76
	Parameter	Beginning	1	2	3	4	5
	Time (min)	1420	1425	1428	1431	1434	1437
	Depth to Water (ft)	31.16	31,30	31,30	31.30	31.19	31.19
	Purge Rate (L/min)	.0	- 8	٠, ي	٠, ي	. 5	, 2
	Volume Purged (L)	,4	١,٦	∂. 0	2.6	3.0	3.8
	рН	760	7.81	7.91	7.90	7.86	7.84
	Temperature (°C)	10.30	10.43	10,70	11.4	1150	11,50
	Conductivity (µmhos/cm)	167	164	150	156	144	144
	Dissolved Oxygen (mg/L)	9,78	9.74	9.66	9.61	9.51	9.50
	Turbidity (NTU)	Ø	Ø	8	Ø	\Diamond	Ø
	Eh (mv)	160	159	159	19	164	165
TO	TAL QUANTITY OF WATER REM	OVED (L): _5	0,				1.1414
SAI	MPLERS:	▲ `	MPLING TI	ME (START/	END):	1440	-1446
SAI	MPLING DATE: 1110	<u>98 </u>	CONTAMIN	ATION FLU	IDS USED:	DI	·
SAI	MPLE TYPE: <u>G(a)</u>	b sa	MPLE PRES	ERVATIVES	S:	HCL	_
SAI	MPLE BOTTLE IDs: <u>BN</u>	-13-51-r	$n\omega \infty$	8	·		
SAI	MPLE PARAMETERS:	00					
CO	MMENTS AND OBSERVATIONS:						

WI	TE NAME: ELL I.D.: ELL CONDITION:	Site MW GAT	1	WEI	JECT NUME LL LOCK ST ATHER:		90	.47.7503 od cy = 40
so	UGE DATE: UNDING METHOD: ICK(UP)DOWN (ft):	11 4 S	kr lune India 15.24	CHOY MEA	JGE TIME: ASUREMENT LL DIAMETT			00)C ,;;
PU.	RGE DATE: RGE METHOD: IBIENT AIR VOCs (ppm)	Start: C	4198 W Flow D.O. End: Ø	FIEL	GE TIME: .D PERSON! .L MOUTH \		100 KS Start: <u>0</u>	BA
			<u>w</u>	ELL VOLUM	Æ			•
A. B. C.			0.00 1.95 18.05	D. WELL V E. WELL V F. THREE	VOLUME (L)			3,605 0,92 32,76
	Parameter		Beginning	1	2	3	4	5
	Time (min)		1019	1017	1022	1027.	1032	1037
	Depth to Water (ft)		11.95	11.98	11.98	41.98	11.98	11.98
	Purge Rate (L/min)		.3	13	.3	, 3	, 3	, 3
	Volume Purged (L)		1.2	2.7	4.3	5.7	7.2	8.7
	рН		5.01	5.54	5.54	559	5.5	559
	Temperature (°C)		11.67	1184	13.68	15,00	16.15	15.94
	Conductivity (µmhos/cm)		353	393	291	257	271	317
	Dissolved Oxygen (mg/L)		5.05	6.01	60	5,94	5.94	5.59
	Turbidity (NTU)		3.0	3	4	3	2	3
	Eh (mv)		204	205	308	213	210	318
TOT	TAL QUANTITY OF WATE	R REMO	OVED (L):	17.3	=======================================		<u> </u>	
	MPLERS:	K81	0 1	MPLING TIN	AE (STADE)	END)	1108-	
	MPLING DATE:	1141	âQ		,	,	7700	· · · · · · · · · · · · · · · · · · ·
	MPLE TYPE:	6	- 10	CONTAMIN			1)1,	
	•			MPLE PRES	ERVATIVES	S: - A		
		_	3-51- MW		TAL SIE	20		
		oc_		els (Ferta	Lac	504-1-48/3	· · · · · · · · · · · · · · · · · · ·	
CON	MMENTS AND OBSERVAT	IONS: _	451±50	, Clear	app	D 10008	3	
			,	·				
						· · · · · · · · · · · · · · · · · · ·		
					•			

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING (OVERFLOW PAGE)

Site Name: Site 143	Project No.: 39100.47 7503 Date: 11/4/ 98
Well ID: MW-2101	Field Personnel:

Parameter	6	7	8	9	10	11
Time (min.)	1042	1045	1048	1051	1054	
Depth to Water (ft)	11,98	11.98	11.98	11.97	11.97	
Purge Rate (L/min)	,3	.3	, 3	. 3	,3	
Volume Purged (L)	10.2	11.1	12.0	12.9	13. 1.	
рН	5.62	5.64	5.66	5,67	5.67	
Temperature (°C)	15.70	15.22	14.80	14.55	14,49	
Conductivity (µmhos/cm)	318	321	319	321	322	
Dissolved Oxygen (mg/L)	5.86	5,89	5,43	5.95	5,91	
Turbidity (NTU)	H	5	Lo.	8	2	
Eh (mv)	হাণ	aal	व्यव	222	224	

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						
Volume Purged (L)						
pH				·		
Temperature (°C)		·				
Conductivity (µmhos/cm)						
Dissolved Oxygen (mg/L)					,	
Turbidity (NTU)						
Eh (mv)						

COMMENTS AND OBSERVATIONS			
		·	

	E NAME:	_205	Jern Plum	PRC	JECT NUMI	BER:		de1600.41, 1503		
	LL I.D.:		L-105H	WEI	LL LOCK ST	ATUS:	10	CKOG		
WE	LL CONDITION:	<u></u>	20CX	WE	ATHER:			5 rnny, 500		
GA	UGE DATE:	11	112198	GAU	JGE TIME:			920		
SO	UNDING METHOD:	_51	operaica to		ASUREMEN"	ΓREF:		TOC		
STI	CK UP/DOWN (ft):		3.17	WEI	LL DIAMETI	ER (in.):		<u></u>		
	RGE DATE:		12 198		GE TIME:			45		
	RGE METHOD:		Staltic		D PERSONI			BA		
AM	BIENT AIR VOCs (ppm)	Start:	○ End: ○	WEI	T MOUTH	VOCs (ppm):	Start:	O End:		
			<u>W</u>	ELL VOLUN	Æ			•		
Α.	WELL DEPTH (ft):		46.87	D WELL	VOLUME/F1	Γ	0	,605		
B.			2.63		VOLUME (L			16,77		
C.	LIQUID DEPTH (ft) (A-B):		44.24			UMES (L) (E		50.31		
:	\$,				,			
	Parameter		Beginning	1	2	3	4	5		
	Time (min)		950	954	958	1001	1004			
	Depth to Water (ft)		2.89	3,52	3,52	3,55	3,55			
	Purge Rate (L/min)		15	1.5	15	15	1.5			
	Volume Purged (L)		7.5	13.5	19,5	24.0	28.5			
	рН		6.85	6.84	6.84	682	6.81			
	Temperature (°C)		8:96	8,17	8.11	8.09	8,08			
	Conductivity (µmhos/cm)		38	34	35	35	35			
	Dissolved Oxygen (mg/L)		10.75	10.84	11.47	11.35	11:27			
	Turbidity (NTU)		144	ිට්ට්	5	5	5			
	Eh (mv)		149	153	155	158	159			
TO	TAL QUANTITY OF WATE	R REMO	OVED (L):	42	·					
SAI	MPLERS: <u>5</u>	C. Br	· /	AMPLING TI	- ME (START	/END) ·	1010/	1013		
	MPLING DATE:	11 IR	ics	ECONTAMI		•		ne		
	 -	irah		AMPLE PRES			HCL			
•	MPLE BOTTLE IDs:		U13 EPM		DEKVAIIVE	S:	1702			
		Voc	ors er m	weas						
	MPLE PARAMETERS:		ì			. 0 () ,			
COI	MMENTS AND OBSERVAT	IONS:	ph che	K OK		Maned	x out C	up at		
										
7										

Site Name:	Easten Plu	nl	Project Number	r: .	29600 47	7503	
Well ID:	MW-205		Well Lock Statu		<u>6000</u>		
Well Condition:	<u>Good</u>		Weather:	(stoudy, a	old (30)	
Gauge Date:	11/9/98		Gauge Time:		1300		
Sounding Method:	slupe indica	a tu	Measurement R	Ref:	TOC		
Stick Up/Down (ft):	1.94		. Well Diameter ((in.): .	211	· · · · · · · · · · · · · · · · · · ·	
Purge Date:	11/9/98	_	Purge Time:	•	1305		
Purge Method:	Low Flow		Field Personnel	Ŀ .	KS, BDA	<u> </u>	
Ambient Air VOCs (ppm):	0.0		Well Mouth VO	OCs (ppm):	0.0	·	
	78,77	WELL V	OLUME	(0.41)	,i., 6 5		
A. Well Depth (ft):	14.27		D. Well Volum		<i>32,</i> 97		
B. Depth to Water (ft):	54.5		C. Well Volum		93.41		
E. Liquid Depth (ft) (A-B)			E. Three Well	Volumes (L)			
Parameter	Beginning	1	2	_3	4	5	
Time (min.)	1307	1312	1317	1322	1327	1332	
Depth to Water (ft)	24.27	24.42	24.43	24.41		34.45	
Purge Rate (I/min)	.2	1,2	.2	1.2	12	,2	
Volume Purged (L)	14	1.4	2.4	3.4	4.4	5.4	
рН	6.61	6.15	6.09	6.13	6.19	6.22	
Temperature (°C)	8.93	8.83	8.84	8.97	9.26	9.43	
Conductivity (µmhos/cm)	160	147	134	135	135	/33	
Dissolved Oxygen (mg/L)	5.81	3.27	4,00	3.08		2.64	
Turbidity (NTU)	13	46	53	65	5/	42	
eH (mV)	731	244	248	248	247	247	
Total Quantity of Water Remo					11175 111	20	
Samplers:	KS BVA	~	Time (Start/End)		1425 -143	, J	
Sampling Date:	11/9/98	Decontan	nination Fluids Us	sed:	<u> </u>		
Sample Type:	GRAB		reservatives:		HCI		
	BN-13-EF	D-MWOOL	<u> </u>				
Sample Bottle IDs:							
Sample Bottle IDs: Sample Parameters:	VOCs			·			

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING (OVERFLOW PAGE)

Site Name:	E'ASTERN Plung	Project Number:	2960	10.47 7503 Dat	e: <u>11/9/48</u>	
Well ID:	MW-205	Field Personnel:	KS	BDA		

Parameter	6	7	8.	9	10	11
Time (min.)	1337	1342	1347	1352	1357	1402
Depth to Water (ft)	24.41	24.41	24.40	24.41	24,43	24.42
Purge Rate (L/min)	12	، ي	,2	12	12	12
Volume Purged (L)	6.4	7.4	8.4	9.4	10.4	11.4
pH	6.34	6.37	6.40	6,42	6.45	654
Temperature (°C)	9.59	9.60	9.66	9.67	9.66	9.91
Conductivity (µmhos/cm)	132	133	133	132	132	129
Dissolved Oxygen (mg/L)	3.77	3,12	2.96	2.92	2.90	3,00
Turbidity (NTU)	28	26	21	20	17	17
eH (mV)	251	249	249	248	247	246
Parameter	12	13	14	15	16	17
Time (min.)	1407	1412	1417	1420	1423	
Depth to Water (ft)	24.41	24.41	24.41	24.41	24.41	
D. D. C. (I (min))				<u> </u>	1 1	
Purge Rate (L/min)	1,2	1,2	1,2	12	,2	
Volume Purged (L)	12.4	13.4	14.4	14.9	15.4	
	1					
Volume Purged (L)	12.4	13.4	14.4	14.9	15.4	
Volume Purged (L)	12.4 6.55	13.4 6.58	14.4	14.9 6.59	15,4 659	
Volume Purged (L) pH Temperature (°C)	12.4 6.55 9.43 129	13.4 6.58 9.46	14.4 6.58 9.95	14.9 6.59 9.93	15.4 659 9.92 131 3.23	
Volume Purged (L) pH Temperature (°C) Conductivity (μmhos/cm)	12.4 6.55 9.43	13.4 6.58 9.46 136	14.4 6.58 9.95 /3/	14.9 6.59 9.93 130	15.4 659 9.92	

Comments and Observations:					
·					
		-			
					

SAMPLE PARAMETERS: VOC

COMMENTS AND OBSERVATIONS:

lowest possible rate,

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING

WE	E NAME: 2 LL I.D.:	Eastern Plume MW-207A good		WEI	JECT NUME LL LOCK ST. ATHER:		2960047 good sumy 50		
SO	UGE DATE: UNDING METHOD: CK DPADOWN (ft):		10.98 2 Indicato 250	MEA	IGE TIME: SUREMENT LL DIAMETE		1050 TOC		
PURGE DATE: PURGE METHOD: AMBIENT AIR VOCs (ppm) PURGE DATE: 11/10/48			FIEL	GE TIME: D PERSONN L MOUTH V					
			w	ELL VOLUM	Œ			•	
B.	A. WELL DEPTH (ft): 73.22 D. WELL VOLUME/FT (L): 0.605 B. DEPTH TO WATER (ft): 0.56 E. WELL VOLUME (L) (C*D): 43.76 C. LIQUID DEPTH (ft) (A-B): 72.66 F. THREE WELL VOLUMES (L) (E*3): 131.88								
	Parameter		Beginning	1	2	3	4	5	
	Time (min)		1055	1058	1103	110	1/12	11.17	
	Depth to Water (ft)		0.56	0.94	0.99	2.44	2.44	2.44	
	Purge Rate (L/min)		.8	.8	. 8	,8	18	. 8	
	Volume Purged (L)			9.0	80	120	18.Q	20. Q	
	рН		6,91	6,65	6.58	6,56	6.56	6156	
	Temperature (°C)		8.56	8.63	8.97	8.97	8.97	8.97	
	Conductivity (µmhos/cm)		1	133	130	131	130	131	
	Dissolved Oxygen (mg/L)		3,17	1,03	1,27	0.21	.19	,19	
	Turbidity (NTU)		21	40	13	7	3	4	
	Eh (mv)		98	105	106	106	106	106	
тот	TAL QUANTITY OF WATER I	REMO	OVED (L):	25.6					
SAN	MPLERS: _5D	, <u>50</u>	SA	MPLING TI	ME (START/	END):	1120-11	25	
SAM				CONTAMIN	•	•	Non		_
SAM	IPLE TYPE:	gra	:				HCC		_
SAM	AMPLE TYPE: <u>grab</u> SAMPLE PRESERVATIVES: <u>HCC</u> AMPLE BOTTLE IDs: <u>BN - 1/3 - EP 011</u>								

water containerized

SITE NAME: Eastern Plume WELL I.D.: WELL CONDITION: Exect		WEI	PROJECT NUMBER: WELL LOCK STATUS: WEATHER:			2960047 good Overcust, 45°		
SOUNDING METHOD: Slope	9.99 Indicator To 2.55	MEA	IGE TIME: ASUREMENT LL DIAMETE			1450 C		
PURGE DATE: 11-8-98 PURGE METHOD: Low Flow AMBIENT AIR VOCs (ppm) Start: C End: O			GE TIME: D PERSONN L MOUTH V		1450 50,50 Start: O End: O			
	w	ELL VOLUM	Œ			•		
A. WELL DEPTH (ft): 46.95 D. WELL VOLUME/FT (L): 0.605 B. DEPTH TO WATER (ft): 28.29 E. WELL VOLUME (L) (C*D): 11.29 C. LIQUID DEPTH (ft) (A-B): 18.66 F. THREE WELL VOLUMES (L) (E*3): 33.87								
Parameter	Beginning	1	2	3	4	5		
Time (min)	145A	1455	1457	1500	1503	1506		
Depth to Water (ft)	28.29	28.29	28.29	28.29	28.29	28.29		
Purge Rate (L/min)	.2	,2	,2	,2	12	12		
Volume Purged (L)	, 2	3.8	1.60	2.2	2.8	3.4		
рН	5.87	5.82	5.80	5.78	5.76	5,7		
Temperature (°C)	7.60 67	7.95	8.10	8.43	9,90	10.78		
Conductivity (µmhos/cm)	41	37	40	\$ 4	45	245		
Dissolved Oxygen (mg/L)	12.29	12.32	12.17	12.03	11.70	11,50		
Turbidity (NTU)	100	. <i>j</i>	/-	1 .	1	0		
Eh (mv)	141	142	143	144	145	146		
SAMPLERS: SC, SD SAMPLING TIME (START/END): 1520-1525 SAMPLING DATE: 11/8/98 DECONTAMINATION FLUIDS USED: 1000-2 SAMPLE TYPE: SAMPLE PRESERVATIVES: HCL								
SAMPLE BOTTLE IDs:				<i>.</i>				
SAMPLE PARAMETERS: BN - 15	3-EP-MW	007	V	9C				
COMMENTS AND OBSERVATIONS:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	eck O	K					

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING (OVERFLOW PAGE)

Site Name: Eagur Dume	Project No.: 2460047	Date: 11-8-98
Well ID: MW-224	Field Personnel: SD, Sc	

Parameter	6	7	8	9	10	11
Time (min.)	1509	1512	15 1 8	·		
Depth to Water (ft)	28.29	28.29	28:29			· ·
Purge Rate (L/min)	12	<i>a</i> ₁ 2	a 12		·	
Volume Purged (L)	4.0	4,6	5.2			
pH	5.72	5,71	5.70			
Temperature (°C)	11.30	11.40	11.41			
Conductivity (µmhos/cm)	51	5/	51			
Dissolved Oxygen (mg/L)	11:33	11.30	11,19			
Turbidity (NTU)	0	0	0		, , , ,	
Eh (mv)	147	148	149		·	

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						
Volume Purged (L)						
pН						
Temperature (°C)						
Conductivity (µmhos/cm)						
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)						

COMMENTS AND OBSERVATIONS	

Site Name: Well IID: Well Condition:	MW-205A Good		Project Number: Well Lock Status: Weather:		29600,47,7503 Locked Coudy ± 30	
Gauge Date: Sounding Method: Stick(Up)Down (ft):	1119198 Slope India 2.81	catol	. Gauge Time: . Measurement R . Well Diameter (_	1435 TOC	
Purge Date: Purge Method: Ambient Air VOCs (ppm):	1119198 Low Flow 0,0		Purge Time: Field Personnel Well Mouth VC		1436 13/8A 0.0	
A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)	76.03 20.84 55.19	WELL V	OLUME D. Well Volum C. Well Volum E. Three Well V	e (L)	0,605	39 17
Parameter Time (min.) Depth to Water (ft) Purge Rate (l/min) Volume Purged (L) pH Temperature (°C) Conductivity (µmhos/cm) Dissolved Oxygen (mg/L) Turbidity (NTU) eH (mV)	Beginning 1440 20,84 13 13 5,19 8,11 89 8,43 4,0	1945 20.83 .3 1.8 5.93 7.73 85 7.89 60	2 1450 20.85 .3 3.3 6.00 7.98 89 7.90 73	1455 20.85 .3 .4.8 6.06 8.21 83 7.56 2	1500 20,85 .3 6,3 6,11 8.56 8.56 8.57	5 1505 20.85 -3 7.8 6.10 8.70 85 7.50 1
Total Quantity of Water Removed (L): 10.2 Samplers: 10.6 A Sampling Time (Start/End): 1508 - 1513 Sampling Date: 11998 Decontamination Fluids Used: DI Sample Type: Sample Preservatives: HCL Sample Bottle IDs: Sample Parameters: 10.0 C Comments and Observations: 10.0 C						

Site Name: Well ID: Well Condition:	NAS Bionswick MW-209A Good		Project Number: Well Lock Status: Weather:		296004/17503 LOCKED Suny (cot ± 40	
Gauge Date: Sounding Method: Stick Up(Down (ft):	1111998 5100 Inc 2.55	diador	Gauge Time: Measurement R Well Diameter (Ref:	0950 TOC 2"	
Purge Date: Purge Method: Ambient Air VOCs (ppm):	11/10/98 10W Flaw 0,0		Purge Time: Field Personnel: Well Mouth VOCs (ppm):		0952 131BA 0:0	
A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)	32,70 13,53 19,17	WELL VO	OLUME D. Well Volume C. Well Volume E. Three Well V	e (L)	0,605 11,60 34,8	
Parameter Time (min.) Depth to Water (ft) Purge Rate (l/min) Volume Purged (L.) pH Temperature (°C) Conductivity (µmhos/cm) Dissolved Oxygen (mg/L) Turbidity (NTU) eH (mV)	Beginning O954 13,53 19 19 19 19 19 19 19 1		2 1004 13.70 2.4 6.98 9.07 7.39 6	3 1009 13,70 ,3 3,4 7.01 9.31 80 7.38 Ø	1012 1370 -2 4.0 7.03 9.36 78 1.38 0	5 1015 13.70 ,3 4,6 7,03 9,39 78 7,40 9
Total Quantity of Water Remove Samplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Observations:	LSIBA IIII0198 Grab				18 - 105 ¹	1

SITE NAME:	Eastern Plump	PROJECT NUMBER:	29600477503					
WELL I.D.:	MW-230A	WELL LOCK STATUS:	10CK09					
WELL CONDITION:	Good	WEATHER:	0NUCCAST, 500					
GAUGE DATE:	11/9/98	GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.):	1015					
SOUNDING METHOD:	51/09 e indicator		TOC					
STICK UP/DOWN (ft):	2,21		2					
PURGE DATE:	11/9/98	PURGE TIME:	1020					
PURGE METHOD:	LOW Flow	FIELD PERSONNEL:	SD SC					
AMBIENT AIR VOCs (ppm)	Start: 0 End: 0	WELL MOUTH VOCs (ppm):	Start: O End: O					
WELL VOLUME								
A. WELL DEPTH (ft): B. DEPTH TO WATER (ft): C. LIQUID DEPTH (ft) (A-B):	$\frac{15.72}{1000}$ E. W	VELL VOLUME/FT (L): VELL VOLUME (L) (C*D): HREE WELL VOLUMES (L) (E*3):	0.60S 40.15 120.45					

Parameter	Beginning	1	2	3	4	5
Time (min)	1024	1028	1032	1035	1040	1045
Depth to Water (ft)	16.00	15.88	15,88	15.86	15.86	5.86
Purge Rate (L/min)	0.4	0.4	014	0.4	0.4	0.4
Volume Purged (L)	1.6	3.2	4.8	6.0	8,0	10.0
рН	7,11	7,55	7.69	7.77	7.81	7,85
Temperature (°C)	8.55	7.82	7.92	8.04	5,18	8,35
Conductivity (µmhos/cm)	65	64	67	68	68	68
Dissolved Oxygen (mg/L)	6.85	199	1.18	0.93	0.77	0,63
Turbidity (NTU)	9	133	99	68	52	36
Eh (mv)	80	10	-69	- 99	-121	-148

_

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING (OVERFLOW PAGE)

Site Name: Fastorn Plume	Project No.: 29100, 47, 2503 Date: (119198
Well ID: MW-378236A	Field Personnel: Sb SC

Parameter						T -
Farameter	6	7	8	9	10	11
Time (min.)	1050	1055	1100	1105	1110	11/5
Depth to Water (ft)	5.86	15.86	15.86	15.86	15.86	15.86
Purge Rate (L/min)	6,4	0.4	0.4	0.4	0.4	0.4
Volume Purged (L)	12.00	14.00	16.06	18.00	20.00	22.00
pH	7,86	7.87	7.87	7.88	7.88	7.88
Temperature (°C)	8.42	8.46	8.47	8.52	8,56	8.60
Conductivity (µmhos/cm)	64	93	93	62	93.	47
Dissolved Oxygen (mg/L)	0,50	0.44	.30	131	,31	. 28
Turbidity (NTU)	23	19.4	18.8	12.8	26	32.2
Eh (mv)	-160	-169	-172	-177	-180	184.3

Parameter	12	13	14	15	16	17
Time (min)	1120	1125	1130			
Depth to Water (ft)	15.86	15.86	15.86			
Purge Rate (L/min)	0.4	0.4	0.4			
Volume Purged (L)	24.00	24.00	28.00			
рН	7.89	7.89	7.89			
Temperature (°C)	B.lel	8.62	8.62			
Conductivity (µmhos/cm)	68	68	68			
Dissolved Oxygen (mg/L)	38	, 23	, 24			
Turbidity (NTU)	32	32	32			
Eh (mv)	-185	- 187	-187			

COMMENTS AND OBSERVATIONS		
	· · · · · · · · · · · · · · · · · · ·	
		·

SITE NAME: Eastern Plume WELL I.D.: hw.23//f WELL CONDITION:			WE	DJECT NUMI LL LOCK ST ATHER:			29600.47,7503 10cka 0048cast,500	
SO	UGE DATE: UNDING METHOD: ICK UP/DOWN (ft):	ME.	UGE TIME: ASUREMEN LL DIAMETI		- 1225 - 10 C - 2			
PURGE DATE: PURGE METHOD: AMBIENT AIR VOCs (ppm) Low Flow Start: C End: C			FIE	PURGE TIME: 1228 FIELD PERSONNEL: 50 C End: 0				
		_	ELL VOLU	ME			•	
B. DEPTH TO WATER (ft): 20.80 E. WELI				VOLUME/F1 VOLUME (L WELL VOL) (C*D):		1605 15.18 15.54	- - -
	Parameter	Beginning	1	2	3	4	5	
	Time (min)	1233	1238	1243	1248	1250	1255	
	Depth to Water (ft)	21.04	21.15	21,00	21.02	21.02	21.02	
	Purge Rate (L/min)	0.4	0.4	0.3	0.3	0.3	0.3	
	Volume Purged (L)	20	4.0	5.5	7.0	8.5	10	
	pH	6.77	6,61	6.64	6.62	€.64	6.64	
	Temperature (°C)	7.75	8,52	8.82	9.01	9.04	9.09	
	Conductivity (µmhos/cm)	47	46	46	45	44	49	
	Dissolved Oxygen (mg/L)	9.07	9,49	9.80	9.79	9.68	9.68	
	Turbidity (NTU)	311	473	256	152.7	145	89	
ł	Eh (mv)	56	69	78	83.4	84	90.1	
TOT	TAL QUANTITY OF WATER REM	OVED (L): _ <u></u>	65		-			
	MPLERS: 50.5	C_{\perp}		- ME (START/	END):	1345	- 1350	
SAN	SAMPLING DATE: 11/9/98 DECONTAMINATION FLUIDS USED: hone							
SAN	SAMPLE TYPE: Grab SAMPLE PRESERVATIVES: HCL							
SAN	SAMPLE BOTTLE IDs: 3N-13-5P-MW003							
SAM	IPLE PARAMETERS:							
COMMENTS AND OBSERVATIONS: 1239 cleaned out can								

Site Name: Eastern Plume	Project No.: 296047750 Date: 11/9/98
Well ID: MW-23/14	Field Personnel:

Parameter	6	7	8	9	10	11
Time (min.)	1300	1305	1310	1315	1320	1325
Depth to Water (ft)	21.02	21.02	21.02	21.02	21.02	21,02
Purge Rate (L/min)	0.3	0.3	0.3	0.3	0.3	0.3
Volume Purged (L)	11.5	13.00	145	16.0	17.5	19
pH	6.64	6.65	6.67	6.65	6 65	6.64
Temperature (°C)	9.10	9.11	9.15	9.20	9.22	9,23
Conductivity (µmhos/cm)	43	44	45	45	43	57
Dissolved Oxygen (mg/L)	9.73	9.61	9.43	9.62	9.62	9.62
Turbidity (NTU)	79.1	80	53	57	50	50
Eh (mv)	89	92	93	95.8	96	97

Parameter	12	13	14	15	16	17
Time (min)	1330	1335	1340			
Depth to Water (ft)	21.02	21.02	21,02			
Purge Rate (L/min)	0.3	0.3	0.3			
Volume Purged (L)	20.5	22.0	23,5			
pН	6.64	6.64	6.64			
Temperature (°C)	9.26	9.27	9.27			
Conductivity (µmhos/cm)	45	41	42			
Dissolved Oxygen (mg/L)	9.63	9.66	9.62			
Turbidity (NTU)	38	38	39			
Eh (mv)	99	101.	100			

COMMENTS AND OBSERVATIONS	 	

SITE NAME: WELL I.D.: WELL CONDITION:	Eastern Plume MW-231-13 Good	PROJECT NUMBER: WELL LOCK STATUS: WEATHER:	29600477503 1006-9 0447Cast,50
GAUGE DATE: SOUNDING METHOD: STICK UP/DOWN (ft):	11-9/98 Slope indicator 3.00	GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.):	10C 1345
PURGE DATE: PURGE METHOD: AMBIENT AIR VOCs (ppm)	11-9-98 Low Flow Start: O End: O	PURGE TIME: FIELD PERSONNEL: WELL MOUTH VOCs (ppm):	347 5c,5D Start: O End: O
	WELI	VOLUME	. •
B. DEPTH TO WATER (ft): 25,23 E.		WELL VOLUME/FT (L): WELL VOLUME (L) (C*D): THREE WELL VOLUMES (L) (E*3):	0.605 19.74 39.22

Parameter	Beginning	1	2	3	4	5
Time (min)	1348	1350	1355	1900	1405	1410
Depth to Water (ft)	25.80	23.75	25.75	25.75	25.74	25.75
Purge Rate (L/min)	0.2	0. 2	0.2	6.2	0.2	0.2
Volume Purged (L)	0.2	0.6	ما السيق	9. to	3. D	4.8
рН	6.41	6.4	6.39	4.37	6.37	4.37
Temperature (°C)	7.85	8.25	9.14	9.87	10.05	10.13
Conductivity (µmhos/cm)	51	51	68	50	52	52
Dissolved Oxygen (mg/L)	11.02	10.98	11.00	11.03	11.01	11.00
Turbidity (NTU)	155	139	84	34	24	21
Eh (mv)	108	107	105.6	107	108	110

TOTAL QUANTITY OF WA	ATER REMOVED (L)):	
SAMPLERS:	50,50	SAMPLING TIME (START/END):	1940-19-45
SAMPLING DATE:	11-9.98	DECONTAMINATION FLUIDS USED:	none
SAMPLE TYPE:	Lrab	SAMPLE PRESERVATIVES:	HCL .
SAMPLE BOTTLE IDs:	BN-13-	EP-MW005	
SAMPLE PARAMETERS:	<u>Voc</u>		
COMMENTS AND OBSERV	VATIONS:		

Site Name: Eastern Plume	Project No.: 2940047	Date: 11-9-98
Well ID: MW> 231~B	Field Personnel: 50,50	

Parameter	6	7	8	9	10	11
Time (min.)	1415	1420	1425	1430	1435	
Depth to Water (ft)	25.72	25.72	25.70	25.76	25.70	
Purge Rate (L/min)	0.2	0.2	0.2	0.2	0.2	
Volume Purged (L)	5.60	B.b	7.6	80.50	14.29.6	
рН	6.37	6.37	6.37	6.37	6.37	
Temperature (°C)	10.97	10.49	10.91	10.91	10.91	
Conductivity (µmhos/cm)	51	52	53	53	52	
Dissolved Oxygen (mg/L)	10.97	10.90	10.97	10.91	10.91	
Turbidity (NTU)	12.0	11.0	9	9	8	
Eh (mv)	iII	113.	112	1/3	1/3	

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						
Volume Purged (L)						
pH						
Temperature (°C)						
Conductivity (µmhos/cm)						
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)						

COMMENTS AND OBSERVATIONS	
·	·

WE	E NAME: LLL I.D.: LLL CONDITION:	MW-	nPlume 303 Od	WEI	JECT NUME LL LOCK ST. ATHER:		296047 good Sunny, 50°		
SO	UGE DATE: UNDING METHOD: CK (UP)DOWN (ft):		>-98, Endicator	MEA	IGE TIME: ASUREMENT LL DIAMETE		1305 TOC 2"		
PU	RGE DATE: RGE METHOD: BIENT AIR VOCs (ppm)		1-10-98 <u>ou</u> Plow <u>C</u> End: 0	FIEL	GE TIME: D PERSONN L MOUTH V		5e	09 50 End: O	
B.	WELL DEPTH (ft): DEPTH TO WATER (ft): LIQUID DEPTH (ft) (A-B)	_12	<u>w</u> 71.62 7 59.45		VOLUME/FI VOLUME (L)		39	605 5.97 67,91	<u> </u>
	Parameter		Beginning	ı	2	3	4	5	1
	Time (min)		1310	1315	1320	1325	1330	1335	1
	Depth to Water (ft)		12.19	12.19	12,19	12.19	12.19	12.19	1
•	Purge Rate (L/min)		./	,]	01	-1	•1	• 1	1
	Volume Purged (L)	-	•1	.5	1.1	1,6	2.1	26	1
	рН		7.66	7,85	7.92	7.95	7.96	7,96	
	Temperature (°C)		8.34	8.02	7.80	7,89	8.02	8.09	1
	Conductivity (µmhos/cm)		160	142	162	163	160	100	1
	Dissolved Oxygen (mg/L)		2.26	1,38	.53	.36	-30	, 29	1
	Turbidity (NTU)		29	2	2	Z	2	a	1
	Eh (mv)		97	-54	-126	-160	-180	-183	1
	TAL QUANTITY OF WATE		•	5.6	-				킈
	MPLERS:	50; 50		MPLING TII			1400-1		
	MPLING DATE:	1-10-c		CONTAMIN				ne	
		irap		MPLE PRES	ERVATIVES	5:	- Hec		
SAN	MPLE BOTTLE IDs:	BN-	13 EP013			·			
SAN	MPLE PARAMETERS: V	<u>oc</u>	· ·					· · · · · · · · · · · · · · · · · · ·	
CON	MMENTS AND OBSERVAT	TIONS: _				<u>-</u>	•		
	ph check OK								
) _	water containe	W/Z	ed run	Throng	L trea	ment	plan	ロ	
							,		. –

Site Name: Eustern Plume	Project No.: 2960047	Date: 10-11-98
Well ID: MW-30-3	Field Personnel: 50,50	

Parameter	6	7	8	9	10	11
Time (min.)	1340	1345	1390	1395		
Depth to Water (ft)	12.19	12.19	12:19	12.19		
Purge Rate (L/min)	.1	.1	,	. 1		
Volume Purged (L)	3.1	3.6	4.1	4.6		·
рН	7.96	7.96	7,96	7.96		
Temperature (°C)	8.13	8.30	8.34	8.36		
Conductivity (µmhos/cm)	159	157	160	140		
Dissolved Oxygen (mg/L)	. 27	, 20	-21	,20		
Turbidity (NTU)	2	0	D	0		
Eh (mv)	200	-214	-216	-217		

Parameter	12	13	14	15	16	17
Time (min)		·				
Depth to Water (ft)						
Purge Rate (L/min)			·			
Volume Purged (L)				·		
рН						
Temperature (°C)						
Conductivity (µmhos/cm)						
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)						

COMMENTS AND OBSERVATIONS		

Site Name: Well ID: Well Condition:	NAS Brun MW-30 Good	wick 5	Project Number: Well Lock Status Weather:	_ 	MGOOI4 I LOCKED Pain/Wind	· .
Gauge Date: Sounding Method: Stick Up Down (ft):	1111198 Slope Inc 2.70		Gauge Time: Measurement Re Well Diameter (in		0925 TOC 2"	
Purge Date: Purge Method: Ambient Air VOCs (ppm):	141148 Law Fla 0,0	U	Purge Time: Field Personnel: Well Mouth VO	 Cs (ppm):	01099 010	1
A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)	54.12 13.15 40.9	WELL V	OLUME D. Well Volume C. Well Volume E. Three Well V	:(L)	0.605 24.79 74.37	
Parameter Time (min.) Depth to Water (ft) Purge Rate (I/min) Volume Purged (L) pH Temperature (°C) Conductivity (µmhos/cm) Dissolved Oxygen (mg/L) Turbidity (NTU) eH (mV)	Beginning 0933 13,96 13,96 10 1,56 8,39 149 0,30 16 186	1 0937 14.10 .3 1.67 8.65 151 0.30 149 183	2 0942 14.10 .3 3.6 7.81 9.03 151 0.62 5	3 0947 14.10 .3.6 7.85 9.30 180 .36 0	14,06 14,06 14,0 1,0 7,8 1,05 159 159 180	5 0957 14.26 -, 2 5.49 1.88 9.37 39 39 39
Total Quantity of Water Remo Samplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Observations:	1111198 Grab BN-13-E VOC	Sampling Decontair Sample P	Time (Start/End): nination Fluids Use reservatives: ONT MSIM P Flow		10-1015 I	

Site Name:	NAS Brunswick	Project No.: 39600,47750 Date: 1111198
Well ID:	mw-305	Field Personnel: KS FV

Parameter	6	7	8	9	10	11
Time (min.)	1000	1003	1006			
Depth to Water (ft)	14.26	14.26	14.26			
Purge Rate (L/min)	19	19	5		·	
Volume Purged (L)	6.2	6.8	7,4		·	-
pH .	7.90	7.92	7,94			
Temperature (°C)	9.36	9,40	9.43			
Conductivity (µmhos/cm)	153	151	152			
Dissolved Oxygen (mg/L)	0.38	0.39	0.37			
Turbidity (NTU)	Ø	ϕ	Ø			
Eh (mv)	178	179	177			

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)			·			
Volume Purged (L)						
pH					·	
Temperature (°C)						
Conductivity (µmhos/cm)						
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)						

COMMENTS AND OBSERVATIONS		

Site Name:	INH > BIONSWICE		Project Number:		locked	
Well ID:	mw-30	9	Well Lock Status:		Cloudy ± 40	
Well Condition:	<u>6009</u>		Weather:	<u>CN</u>	<u> </u>	
Gauge Date:	39/11/11		Gauge Time:		1956	
Sounding Method:	Slope Ic	dicatol	Measurement Re	ef:	TOC	
Stick Up/Down (ft):	' 2,35		Well Diameter (i	n.):	2"	·
[n p	11111198		Purge Time:		1300	
Purge Date:	Low Flow)	Field Personnel:		CSIFY	
Purge Method:	0.0		Well Mouth VO	Cs (nnm):	0.0	
Ambient Air VOCs (ppm):			Well Would Vo	Сэ (урту.		
	56.98	WELL V		10 (L).	0,605	
A. Well Depth (ft):	18,54		D. Well Volume	. ,	0,605	
B. Depth to Water (ft):	38,44	<u> </u>	C. Well Volume	• •	69.78	····
E. Liquid Depth (ft) (A-B)			E. Three Well \	rolumes (L)		
Parameter	Beginning	1	2	3	4	5
Time (min.)	1308	1313	1318	1323	1328	1333
Depth to Water (ft)	18,54	18.54	18.54	18.6	18.64	18.64
Purge Rate (I/min)	6,	9	6,	, 2	19	-
Volume Purged (L)	ال ا	2,6	3.6	4.6	5.6	10,10
pH	4,86	5,28	5,59	5.69	5,72	5.74
Temperature (°C)	9.18	9.36	9,54	9.60	9,65	9,1de
Conductivity (µmhos/cm)	48	47	48	47	47	48
	11.38	10.61	10.50	10.50	10.50	10,50
Dissolved Oxygen (mg/L)	11.50	30	10	Ч	B	Ø
Turbidity (NTU)	1 1 1	198	199	199	199	200
eH (mV)	198	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Total Quantity of Water Remo		8.4		127	36-134	
Samplers:	ICSIFV	Sampling	Time (Start/End):	1 D	- (· (· · · · · · · · · · · · · · · · ·	α
Sampling Date:	11/11/98		ination Fluids Use	$\frac{1}{2}$ at: $\frac{1}{2}$		
Sample Type:	Grab	 	reservatives:	1+0	<u> </u>	
Sample Bottle IDs:	BN-13-E	P-mw	ON NO			
Sample Parameters:	<u> </u>		. •			
Comments and Observations:						
					· · · · · · · · · · · · · · · · · · ·	
·						

Site Name: Well ID: Well Condition:	NAS BIV MW-30 GOOD	ngvick 8	Project Number Well Lock Statu Weather:		29600,4 Locked Sunnyl =	1 1503 45
Gauge Date: Sounding Method: Stick Up/Down (ft):	Slope Inc 2.44	dicador	Gauge Time: Measurement R Well Diameter (1358 TOC 3"	
Purge Date: Purge Method: Ambient Air VOCs (ppm):	11110198 Low Fla	J.	Purge Time: Field Personnel: Well Mouth VC		130 S S O O	1
A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)	7285 5,44 67,41	WELL V	OLUME D. Well Volume C. Well Volume E. Three Well V	e (L)	0.605	\$
Parameter Time (min.) Depth to Water (ft) Purge Rate (l/min) Volume Purged (L) pH Temperature (°C) Conductivity (µmhos/cm) Dissolved Oxygen (mg/L) Turbidity (NTU) eH (mV)	Beginning 305 5.44 .2 .8 7.59 10.13 640 2.36 0	1310 5,44 13 1,8 7,54 1022 641 0,72 0	2 1315 5,68 7,61 10,23 642 0,57 0	3 1320 5.68 , 2 3.8 7.62 10.12 641 0.47 137 99	1325 5. TY 1.8 7.60 9.80 633 1.71 340	5 1330 5,74 -, 2 5,6 7,60 9,86 632 1,74 36
Total Quantity of Water Remore Samplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Observations:	ved (L):	Decontami Sample Pre	Fime (Start/End): nation Fluids Use servatives:		10 - 1405 I L	

Site Name: NAS Brunswick	Project No.: 39600,47.768 Date: 11/10/98
Well ID: MW - 308	Field Personnel: K2 BA

Parameter	6	7	8	9	10	11
Time (min.)	1335	1340	1345	1348	1351	1354
Depth to Water (ft)	5,73	5,73	5.73	5,75	5.75	5.78
Purge Rate (L/min)	19	12	.S	13	3	5
Volume Purged (L)	6.8	7,8	8,8	9,4	13:4	10.4
pH	7.63	7.64	7.65	7.65	7,66	7.67
Temperature (°C)	9.91	0.0	10.00	9.97	9.96	9.98
Conductivity (µmhos/cm)	632	634	634	635	635	635
Dissolved Oxygen (mg/L)	0.29	0.24	0,25	0.21	0.19	0.21
Turbidity (NTU)	36	35	38	40	4/	45
Eh (mv)	57	47	31	17	4	3

Parameter	12	13	14	15	16	17
Time (min)	1357					
Depth to Water (ft)	5.76					
Purge Rate (L/min)	,2		·			
Volume Purged (L)	10.9					
рН	7.67					
Temperature (°C)	9.93					
Conductivity (µmhos/cm)	636					
Dissolved Oxygen (mg/L)	0.22					
Turbidity (NTU)	48					÷
Eh (mv)	3					

COMMENTS AND OBSERVATIONS		
	· · · · · · · · · · · · · · · · · · ·	

WELL CONDITION: WELL CONDITION: WELL CONDITION: WELL CONDITION: WELL CONDITION:			WEI	JECT NUME LL LOCK ST. ATHER:		OK	-500		
SO	UGE DATE: UNDING METHOD: ICK_UP/DOWN (ft):	siaze indica	tor MEA	GAUGE TIME: //3					
PU.	RGE DATE: RGE METHOD: BIENT AIR VOCs (ppm) Selection of the property of the	1-11-98 Low Flow tart: O End: (FIEL	GE TIME: .D PERSONN .L MOUTH \			80 814 2 End: 0		
B.	WELL VOLUME A. WELL DEPTH (ft): 59.43 D. WELL VOLUME/FT (L): 0.605								
٠.						<i>-</i>			
	Parameter	Beginning	1	2	3	4	5		
	Time (min)	1130	1/32	1135	1140	1145	1150		
	Depth to Water (ft)	2.06	4.37	5.74	7.14	8,71	9.85		
	Purge Rate (L/min)	13	13	0.3	0.3	0.3	0.3		
	Volume Purged (L)	, 3	.9	1.8	3.3	4.8	4.3		
	рН	8.01	8.32	8.50	8,50	8.60	8.62		
	Temperature (°C)	9.11	8.80	8.83	8.81	8.85	8,97		
	Conductivity (µmhos/cm)	200.	192	193	197	194	197		
	Dissolved Oxygen (mg/L)	1.11	146	130	0.2	0.19	0.16		
	Turbidity (NTU)	11.1	54	62	57	35	18		
	Eh (mv)	1.60	132.3	65	35	13	-6,5		
	TAL QUANTITY OF WATER		ما ، يا	_					
SAI	MPLERS: _S	$\mathcal{P}_{i}\mathcal{P}_{A}$ s	SAMPLING TI	ME (START/	END):	12-20 -	1225		
SAI	MPLING DATE:	11-98 [DECONTAMIN	NATION FLU	IDS USED:	NONE	E		
SA	MPLE TYPE:	irah s	SAMPLE PRES	SERVATIVES	S:	_HCC			
SAI	MPLE BOTTLE IDs:	5N-13-EP019							
SAI	MPLE PARAMETERS:V	0C							
CO	MMENTS AND OBSERVATIO	ONS:							
	· · · · · · · · · · · · · · · · · · ·	·							

Site Name: Eastern Plume	Project No.: 2960047 Date: 11-11-98
Well ID: 309-B	Field Personnel: 57/BA

Parameter	6	7	8	9	10	11
Time (min.)	1155	1200	1205	1210	12 13	1218
Depth to Water (ft)	10.94	11.68	12,37	13.39	14.20	14,51
Purge Rate (L/min)	.3	1.3	13	, 3	.3	,3
Volume Purged (L)	7.8	9, 3	10.8	12.1	13.00	13,9
рН	8.45	8.66	8.66	8.67	8.68	8.66
Temperature (°C)	9.02	9,06	9.13	9,13	9,13	9.13
Conductivity (µmhos/cm)	196	197	197	199	198	197
Dissolved Oxygen (mg/L)	0.14	0.13	0.12	-12	-1/	.11
Turbidity (NTU)	18	14	12	9	9	8
Eh (mv)	-13	-21	-28	-30	-31	-33

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						·
Volume Purged (L)						
рН						
Temperature (°C)						
Conductivity (μmhos/cm)	·					
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)			<u> </u>			

COMMENTS AND OBSERVATIONS	* punge	ras slo	w as	Possible	
· · · · · · · · · · · · · · · · · · ·					

SITE NAME: Eastern Plume WELL I.D.: WELL CONDITION: good			WEI	PROJECT NUMBER: WELL LOCK STATUS: WEATHER:			2960047 good sunny, 50°		
SO	UGE DATE: UNDING METHOD: CK UP DOWN (ft):		-98 indicator -30	GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.):			900 		
PU	RGE DATE: RGE METHOD: (BIENT AIR VOCs (ppm)	Lou	0 98 0 Flow O End: O	FIEL	GE TIME: D PERSONN L MOUTH V		908 505C Start: End:		
A. WELL DEPTH (ft): S5.78 D. WELL VOLUME/FT (L): ().605 B. DEPTH TO WATER (ft): 16.79 E. WELL VOLUME (L) (C*D): 23.59 C. LIQUID DEPTH (ft) (A-B): 35.59 F. THREE WELL VOLUMES (L) (E*3): 70.77									
	Parameter		Beginning	1	· 2	3	4	5	
	Time (min)		902	906	910	915	920	925	
	Depth to Water (ft)		16.79	17.69	17.72	17.76	17.75	17.75	
	Purge Rate (L/min)		.2	0,2	0.2	2	0.2	0.2	
	Volume Purged (L)		12	0.8	1.8	2.8	3,8	4,8	
	pН		7.19	7.16	7.16	7.15	7115	7.16	
	Temperature (°C)		8.47	8.36	8 65	9.31	9,73	9.95	
	Conductivity (µmhos/cm)		103	105	22	103	120	125	
	Dissolved Oxygen (mg/L)		1,51	,99	1.32	1.81	2.07	2.38	
	Turbidity (NTU)		17.1	43.4	59	50	43	40	
	Eh (mv)		169	164	143	116	88	65	
TO	TAL QUANTITY OF WATER	REMO	OVED (L):	14.8					
SAN	MPLERS: <u>50</u>	,5C	SA	MPLING TI	ME (START/	END):	1010 /1	015	
SAN	AMPLING DATE: 11/0/95 DECONTAMINATION FLUIDS USED:								
SAN	MPLE TYPE:	wab	SA	MPLE PRES	ERVATIVES	S:	HCL		_
SAN	MPLE BOTTLE IDs:	BNL	3EPM WOO		_	SPmu			_
SAN	MPLE PARAMETERS:	vac							_
CON	MMENTS AND OBSERVATION	ONS:	in chece	LOK		intain	prizzal	. nte +	_

Site Name: Eastern Aune	Project No. 25600.47.7503 Date: 11/10/98
Well ID: MW-311	Field Personnel: 5C,5D

Parameter	6	7	8	9	10	11
Time (min.)	9300	935	940	945	950	955
Depth to Water (ft)	17.75	17,75	75	17.75	13.33	17,75
Purge Rate (L/min)	.2	2	,2	. 2	,2	,2
Volume Purged (L)	5.8	6.8	7.8	8.8	9,8	10.8
pH	7.16	7.17	7.17	7,17	7,17	7.16
Temperature (°C)	10.64	10.09	10.16	10.27	10.22	9.34
Conductivity (µmhos/cm)	65	87	82	106	108	91
Dissolved Oxygen (mg/L)	2.59	2.75	2.86	2.79	3.23	3.//
Turbidity (NTU)	30	23	20	14	17	29
Eh (mv)	49.6	38	34	<i>3</i> 0	23	10

Parameter	12	13	14	15	16	17
Time (min)	1000	1005				
Depth to Water (ft)	17.75	17.75				
Purge Rate (L/min)	0.2	0.2				· · · · · · · · · · · · · · · · · · ·
Volume Purged (L)	11.8	12.8	· ·		·	
рН	7.16	7.16				
Temperature (°C)	9,29	9,22				
Conductivity (µmhos/cm)	89	90				·
Dissolved Oxygen (mg/L)	3.07	3,10				
Turbidity (NTU)	30	29				
Eh (mv)	19	9				

COMMENTS AND	OBSERVATIONS	
--------------	--------------	--

Site Name: Well ID: Well Condition:	NAS Brinswick MW-313 GOOD		Project Number: Well Lock Status: Weather:		39600,47,7503 LOCKED Sunnyllool ±40		
Gauge Date: Sounding Method: Stick Up Down (ft):	1110198 Slope II 3.35	Marbi	Gauge Time: Measurement R Well Diameter (<u> </u>	0902 TOC 7"		
Purge Date: Purge Method: Ambient Air VOCs (ppm):	LOW FR	8	Purge Time: Field Personnel: Well Mouth VO		Q C908		
A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)	37.14 9.11 28.03	WELL V	OLUME D. Well Volume C. Well Volume E. Three Well V	c (L)	0.605 16.96 5088		
Parameter Time (min.) Depth to Water (ft) Purge Rate (I/min) Volume Purged (L) pH Temperature (°C) Conductivity (µmhos/cm) Dissolved Oxygen (mg/L) Turbidity (NTU) cH (mV)	Beginning 0910 9,11 1,27 6,69 8,62 156 2,84	1 0915 9.11 -2 1.4 6:50 7.61 133 1.49 167	2 9,61 13 2,4 6,66 8,04 154 0:54 1	3 9.64 3.4 6.76 8.09 171 0.70	4 0930 9,64 , 3 4,4 6,89 8,33 173 0,68	5 0935 9,64 ,3 5,4 6,94 8,34 170 0,74 1	
Total Quantity of Water Removed (L):							

WI	TE NAME: ELL I.D.: ELL CONDITION:	rn Plume 318 20d	WEI	JECT NUMI LL LOCK ST ATHER:		296 10ck 200 V		30	
SO	UGE DATE: UNDING METHOD: ICKUP/DOWN (fi):		198 pendiator 257	MEA	JGE TIME: ASUREMENT LL DIAMETT		9	125 10°	
PU	PURGE DATE: PURGE TIME: PURGE TIME: PURGE TIME: PURGE TIME: S D S C AMBIENT AIR VOCs (ppm) Start: End: End: WELL MOUTH VOCs (ppm): Start: End: D End: O								<u> </u>
			$\underline{\mathbf{w}}$	ELL VOLUN	Æ		,	•	
A. B. C.	A. WELL DEPTH (ft): 25.14 D. WELL VOLUME/FT (L): 0.605								
	Parameter		Beginning	1	2	3	4	5	1
	Time (min)		936	940	9 44	948	952	956	1
	Depth to Water (ft)		6,56	6.55	6.30	6.30	6,30	6.30	1
	Purge Rate (L/min)		0,2	0.2	0.2	0.2	02	02	1
	Volume Purged (L)		0.8	1,6	2.4	3.2	4.0	4.8	1
	pH		7.4	6.84	6.64	6.57	6.52	6.48	1
	Temperature (°C)		9,66	9.97	10.21	10.56	10.71	10.79	1
	Conductivity (µmhos/cm)		109	62	105	67	63	60	1
	Dissolved Oxygen (mg/L)		4.50	4.12	5.51	5.95	6.32	6.44	
	Turbidity (NTU)		112	24	18.	14	13	/3	
	Eh (mv)		66	42	57	57	57	56	1
TO	TAL QUANTITY OF WAT	ER REMO	OVED (L):	7, <u>2</u>					a
	MPLERS:	5P	$\leq C^{\prime}$	MPLING TI	· ME (STADT)	CATAL.	1006	1.008	
	MPLING DATE:	11/9/9	C	CONTAMIN	•	•	100	17008	
	MPLE TYPE:	Gral					HCL	n e	
	MPLE BOTTLE IDs:		3EP MU	MPLE PRES	ERVATIVES ha <	5: Thas 51) ACL	· · · · · · · · · · · · · · · · · · ·	
		VO		001		7770	-		
	MPLE PARAMETERS:		<u> </u>						• •
COI	MMENTS AND OBSERVA	IIONS: _					•	· .	
				 	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
) —		· V							

Site Name:	Zastern	Pluma	Project No.: Filed	xi.47	Date: /1/9/98
Well ID:	MW 318		Field Personnel:	50S	ic '

Parameter	6	7	8	9	10	11
Time (min.)	600					
Depth to Water (ft)	6.30					
Purge Rate (L/min)	012					
Volume Purged (L)	5.6					
pН	6.48					
Temperature (°C)	10.82					
Conductivity (µmhos/cm)	62					
Dissolved Oxygen (mg/L)	6,56					
Turbidity (NTU)	13					
Eh (mv)	55					

Parameter	. 12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						
Volume Purged (L)						
рН						
Temperature (°C)						
Conductivity (µmhos/cm)						
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)						

COMMENTS AND OBSERVATIONS		
	· · · · · · · · · · · · · · · · · · ·	
		

WI	TE NAME: 4 ELL I.D.: ELL CONDITION:	astern Plium MW-319 good	WE	DJECT NUMI LL LOCK ST ATHER:			00.47 00d 14,50°
SO	LUGE DATE: UNDING METHOD: LICK (OP)DOWN (ft):	ΓREF: ER (in.):		2'			
PU	RGE DATE: RGE METHOD: BIENT AIR VOCs (ppm) St	11-10-48 Low Flow art: _O_ End: _O_	FIEI	GE TIME: LD PERSONI LL MOUTH '	NEL: VOCs (ppm):		019 0.5 C O End: 0
B.	WELL DEPTH (ft): DEPTH TO WATER (ft): LIQUID DEPTH (ft) (A-B):	72.44 15.09 57.35	E. WELL	VOLUME/FI	(L): (C*D): UMES (L) (E	3	605 1,70 04,10
	Parameter	Beginning	1	2	3	4	5
	Time (min)	1018	1023	10.26	1029	1032	
	Depth to Water (ft)	15.09	15.09	15.09	15.09	15,09	
	Purge Rate (L/min)	0.1	0.1	Oil	0.1	0,1	
	Volume Purged (L)	0.1	0.6	0.9	1,2	1.5	
•	рH	7.23	6.66	6.38	6.31	629	
	Temperature (°C)	9.54	9.26	9.60	9.68	9.76	
	Conductivity (µmhos/cm)	103	106	92	94	97	
	Dissolved Oxygen (mg/L)	9.77	7.74	5,98	5.62	5.58	
	Turbidity (NTU)	0	4	9	9	8	
	Eh (mv)	64	75	90	94	99	
тот	TAL QUANTITY OF WATER F	REMOVED (L):	(.8				
SAN	MPLERS: SD	.5c s	AMPLING TII	ME (START)	END) ·	1040-	1005
SAN		0-98 D				none	
SAN		sub s				HCC	
SAN	MPLE BOTTLE IDs: 13N	-13-EP- R	LW 009		•	-	
	IPLE PARAMETERS: VO	•					
	MMENTS AND OBSERVATION						
							
					· · · · · · · · · · · · · · · · · · ·		

HCL

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING

WE	E NAME: LL I.D.: LL CONDITION:		rn Hume V-330 od	WEI	JECT NUMI LL LOCK ST ATHER:		- 90	2960047 9000 Sunny 500		
SO	UGE DATE: UNDING METHOD: CK (UP/DOWN (ft):	_11-12 Slope	-98 Individuor	MEA	JGE TIME: ASUREMEN LL DIAMETI		1240 100 2"			
PUI	RGE DATE: RGE METHOD: BIENT AIR VOCs (ppm)	<u> </u>	(-12.98 04.810W 0_End:	PUR FIEL WEI	50	1244 56,50 Start: O End:O				
						VOCs (ppm):	Start:	C End: C		
B.	A. WELL DEPTH (ft): 36.6 D. WELL VOLUME/FT (L): 6.605 B. DEPTH TO WATER (ft): 4.69 E. WELL VOLUME (L) (C*D): 7.67 C. LIQUID DEPTH (ft) (A-B): 36.51 F. THREE WELL VOLUMES (L) (E*3): 59.01									
	Parameter		Beginning	1	2	3	4	5		
	Time (min)		1245	1248	1251	1254	1259	1300		
	Depth to Water (ft)		12.25	15.08	19.15	19.65	18.79	18.55		
1	Purge Rate (L/min)		.5	13	•5	.8	.2	12		
	Volume Purged (L)		5	2.0	3.5	5,0	5.6	6.2		
	рН		8.64	8.67	8.65	8,52	8.60	8,57		
ļ	Temperature (°C)		8.68	8.98	9.63	9.73	9.47	9,52		
ĺ	Conductivity (µmhos/cm)		90	90	92	92	94	95		
	Dissolved Oxygen (mg/L)		6.10	4.14	1.37	5.04	2.19	3.17		
j	Turbidity (NTU)		269	213	413	214	214	214		
	Eh (mv)		-27	-31	-46	-41	-44	-47		
гот	AL QUANTITY OF WATER	REMO	OVED (L):	1812						
SAN	IPLERS: <u>5</u> T	2,50	SA	MPLING TI	ME (START/	END):	1255	-1300		
SAN	IPLING DATE: U-	· n - 0	3 DE	CONTRA MEN	ATION ET 1	TDC LICED				

_____ SAMPLE PRESERVATIVES:

grab

BN-13-EPMW037

SAMPLE TYPE:

SAMPLE BOTTLE IDs:

SAMPLE PARAMETERS: TVOC

COMMENTS AND OBSERVATIONS: __

Site Name: Eastern Plume	Project No.: 2960047	Date: 11-12-98
22	Field Personnel: SD, SC	

Parameter	6	7	8	9	10	11
Time (min.)	1305	1310	1315	1320	1325	1330
Depth to Water (ft)	17,50	17,20	16.94	16.85	16.85	14.85
Purge Rate (L/min)	.2	. 2	۶, کے	,2	,2	, 2
Volume Purged (L)	7.2	පි.ක	9.2	10.2	11,2	12.2
pH	8.52	8.36	8.39	8.43	8,52	867
Temperature (°C)	9,57	9.46	9.39	9,33	9.31	9.33
Conductivity (µmhos/cm)	93	93	91	92	96	91
Dissolved Oxygen (mg/L)	3,52	3.09	2.82	3,33	2.78	a.71
Turbidity (NTU)	457	310	313	304	318	253
Eh (mv)	-94	-112	-120	-134	-140	-146

Parameter	12	13	14	15	16	17
Time (min)	1335	1340	1345	1350		
Depth to Water (ft)	16.85	14.85	16.85	16.65		
Purge Rate (L/min)	12	، ير	.2	.7		
Volume Purged (L)	13.2	14,2	152	16.2		
pН	8.68	8.73	8,77	8.79		
Temperature (°C)	9.74	9,39	9,40	9.43	,	
Conductivity (µmhos/cm)	91	91	91	91		·
Dissolved Oxygen (mg/L)	2.64	2.06	2.66	2.67		
Turbidity (NTU)	223	213	205	211		
Eh (mv)	-146	-146	-146	-146		

COMMENTS AND OBSERVATIONS	 	
	 ·	

WE	E NAME: LL I.D.: LL CONDITION:	rr	15 Brunsu 1W-33 1000	v	PROJECT NUMI WELL LOCK ST WEATHER:			10,47 (ed 16,1 ±45	
SOL	JGE DATE: INDING METHOD: CK UP/DOWN (ft):	<u></u>	1112198 1112198	to n	GAUGE TIME: MEASUREMEN VELL DIAMETI		136 100 200	<u> </u>	_
PUR	GE DATE: GE METHOD: BIENT AIR VOCs (ppm)	LOU Start: O	JF10W , D End: 6.0	F	URGE TIME: IELD PERSONI VELL MOUTH		13 K5 Start: <u>0</u>	D5 BA End: <u>0.0</u>	_
			w	ELL VOI	UME			•	
В.	WELL DEPTH (ft): DEPTH TO WATER (ft): LIQUID DEPTH (ft) (A-B):		3.4 3.40 4.44	E. WEI	LL VOLUME/FI LL VOLUME (L REE WELL VOL) (C*D):		1605 1811 433	
	Parameter		Beginning	1	2	3	4	5	
	Time (min)		1340	1343	1346	1349	1352	(355	
	Depth to Water (ft)		346	3.40		3.84	3.64	3,64	
	Purge Rate (L/min)		10.8	14	3 8	.8	.8	.8	
	Volume Purged (L)		12	14.4	16.8	19.2	21.16	24.0	
	рН		646	6.39		6.30	6.31	6.31	
	Temperature (°C)		8.95	8.96	0 8.98	8,98	9.00	9.00	
	Conductivity (µmhos/cm)		895	884	876	870	867	8 ido	
╟	Dissolved Oxygen (mg/L)		0.69	0.6	0,69	0.70	0:73	0,12	
	Turbidity (NTU)		\mathscr{Q}	Ø	Ø	0/	Ø	Ø	
L	Eh (mv)		198	199	900	301	209	201	
тот	AL QUANTITY OF WATE	R REMO	VED (L): 2	11.2					
	PLERS: K	911	2 D		— TIME (START)	(END)	1357	- 1404	
	PLING DATE:	IIII	α 0.		MINATION FLU		DT		-
	PLE TYPE: (SIA	n				401	· · · · · · · · · · · · · · · · · · ·	-
	PLE BOTTLE IDs:	311-		MPLE PR	RESERVATIVE	S:	TICL		_
		1/1		11000					_
	PLE PARAMETERS:		/	1	1 -				_
COM	MENTS AND OBSERVAT	IONS: _	tomb (ate a	dwn as	s lau c	72 W22	ible	
			*					<u> </u>	
					·				_

SITE NAME: EASTERN Plune WELL I.D.: WELL CONDITION: 9000				PROJECT NUMBER: WELL LOCK STATUS: WEATHER:			29600 47,7503 Coop portly cloudy cool	
GAUGE DATE: SOUNDING METHOD: STICK UP/DOWN (ft):				GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.): 1/40 70 2"				
PUI	RGE METHOD: <u>Lc</u> m	12 4 8 2 Flore _O End:O	FIEI	GE TIME: .D PERSON? .L MOUTH \	NEL: VOCs (ppm):		30 A OEnd:	<u>-</u>
		<u> w</u>	ELL VOLUN	1E				
B.	WELL DEPTH (ft): DEPTH TO WATER (ft): LIQUID DEPTH (ft) (A-B):	18:60 12:22 6:38	E. WELL	VOLUME/FI VOLUME (L WELL VOL		_3	.605 .86 158	- -
	Parameter	Beginning	1	2	3	4	5	
	Time (min)	1145	1150	1155	1200	1205	1208	
:	Depth to Water (ft)	12.22	12:31	12.19	12.20	12.20	12.20	
	Purge Rate (L/min)	. 3	• 3	.3	.3	.3	,3	•
	Volume Purged (L)	.6	2.1	3,6	5 1	6.6	8.1	
	рН	5,11	5.94	5.99	6.07	6.11	6.12	
	Temperature (°C)	10.87	11.60	11.72	12.22	12.35	12.37	
	Conductivity (µmhos/cm)	35	33	32	34	33	35	
	Dissolved Oxygen (mg/L)	8 .44	8.18	8.14	8.15	8.10	8.10	
	Turbidity (NTU)	1	0	0	0	6	0	
ĺ	Eh (mv)	165	170	171	175	179	180	
TOT	TAL QUANTITY OF WATER REM	MOVED (L):	6.2					
	APLERS: KS		MPLING TI	- ME (START)	FND) ·	B.10-	1215	
SAN	IPLING DATE: $11/2/$		ECONTAMIN	•	, .	7.7	aler	—
SAN	1PLE TYPE: <u>612</u>	1	MPLE PRES			HCL		
		P-13- MWO			EP-13-1		Dualica L	_
		C by 8760					D M. IICK I'C	十
	MENTS AND OBSERVATIONS							

WI	TE NAME: ELL I.D.: ELL CONDITION:	1AS Brunswic 100-333 600-8	WEI	JECT NUMI LL LOCK ST ATHER:		Lock	00,47 e0 n~1±40	750
so	UGE DATE: UNDING METHOD: ICK UP/DOWN (ft):	Sippe Indian	<u>o∕</u> MEA	JGE TIME: ASUREMENT LL DIAMETT		1 <u>0</u> - TC - 2'	05	
PU	RGE DATE: RGE METHOD: BIENT AIR VOCs (ppm) Star	11 12 19 8 t:0.() End: 0	FIEL	GE TIME: .D PERSON! .L MOUTH \		(() BA 2() End: _(<u> </u>
		w	ELL VOLUN	1E			•	
A. B. C.	WELL DEPTH (ft): DEPTH TO WATER (ft): LIQUID DEPTH (ft) (A-B):	46.0 11.57 28.43	E. WELL	VOLUME/FI VOLUME (L) WELL VOL		(,605 7,20 51.60	-
	Parameter	Beginning	1	2	3	4	5	7
	Time (min)	1012	1017	1077	1027	1032	1037	1
	Depth to Water (ft)	11.57	13:21	13.21	13,59	13,59	13,59	1
•	Purge Rate (L/min)	(2)	12	12	نی	12	, 2	1
	Volume Purged (L)	, 4	1.4	2.4	3,4	4.4	5.4	1
	рН	5.07	6.59	6.81	5,68	6.73	680	1
	Temperature (°C)	80,8	8,90	9.15	9,39	9.45	9,47	1
	Conductivity (µmhos/cm)	187	181	[8]	158	154	156]
	Dissolved Oxygen (mg/L)	0.89	5:40	5.20	1.01	4,70	4.65]
	Turbidity (NTU)	66,5	42	124	70	62	<u>8ما</u>	
	Eh (mv)	1 218	209	204	195	180	174]
TO	TAL QUANTITY OF WATER RE	EMOVED (L):	6					2
SAN	MPLERS: YSI	3A sa	MPLING TI	ME (START/	END) ·	1056	1058	
SAN	MPLING DATE:	7100		ATION FLU	•	DT	<u>, (- 3 0 </u>	
SAN	MPLE TYPE:	có h	*	ERVATIVES		HCL		
	MPLE BOTTLE IDs: BN		ทพงร		·			
	MPLE PARAMETERS:	00.						
	MMENTS AND OBSERVATION	S·				· · · · · · · · · · · · · · · · · · ·		
-0.		·					· · ·	
							· · ·	<u>·</u>
					·			

Site Name: NAS BUNSUCK	Project No. 2760 47.7503 Date: 1112 98
well ID: MW-333	Field Personnel: A

Parameter	6	7	8	9	10	11
Time (min.)	1042	1047	1057			
Depth to Water (ft)	13.47	13,47	13,47			
Purge Rate (L/min)	12	٠۵	19			
Volume Purged (L)	6,4	7,4	8,4			·
pH	707	7.13	7,15	·		
Temperature (°C)	9.59	9.63	9.65			
Conductivity (µmhos/cm)	154	154	150			
Dissolved Oxygen (mg/L)	0.38	0.37	0.30			
Turbidity (NTU)	Ø	\emptyset	Ø			
Eh (mv)	138	197	124			·

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						
Volume Purged (L)						
рН						
Temperature (°C)						
Conductivity (µmhos/cm)			·			7
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)						

COMMENTS AND OBSERVATIONS	
	_
	_

65:01

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING

SITE NAME: WELL I.D.: WELL CONDITION:	Eastern Hump MW-334 good	PROJECT NUMBER: WELL LOCK STATUS: WEATHER:	29600.47.750 100Kog Sunny, 50					
GAUGE DATE: SOUNDING METHOD: STICK UP DOWN (ft):	11/17/98 5/eperminant	GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.):	1015 Toc					
PURGE DATE: PURGE METHOD: AMBIENT AIR VOCs (ppm)	11/12/78 100/15/01/10 Start: End:	PURGE TIME: FIELD PERSONNEL: WELL MOUTH VOCs (ppm):	1024 5c, 50 Start: End:					
WELL VOLUME								
A. WELL DEPTH (ft): B. DEPTH TO WATER (ft): C. LIQUID DEPTH (ft) (A-B)	17.8 D. 11.99 E. 35.81 F.	WELL VOLUME/FT (L): WELL VOLUME (L) (C*D): THREE WELL VOLUMES (L) (E*3):	0.605					

F. THREE WELL VOLUMES (L) (E*3):

Parameter	Beginning	1	2	3	4	5
Time (min)	1025	1030	1035	1040	1045	1050
Depth to Water (ft)	13.85	13.25	15.94	4.16,69	16.72	16.66
Purge Rate (L/min)	,3	13	13	,3	/3	, 3
Volume Purged (L)	.13	1.8	3.3	4.8	6.1	7.6
рН	8.33	8.al	8.45	8,33	8,29	826
Temperature (°C)	9,17	9,30	8.63	8.81	8.75	8.71
Conductivity (µmhos/cm)	142	145	143	144	147	146
Dissolved Oxygen (mg/L)	8.53	9,44	6.8	8.27	8.64	9,20
Turbidity (NTU)	261	214	213	241	410	440
Eh (mv)	98	58	9.3	-80	-108	-117

TOTAL QUANTITY OF W	ATER REMOVED (L): _	ما ما	•	
SAMPLERS:	-SD, SC	SAMPLING TIME (START/END) :	115-1120	_
SAMPLING DATE:	11-12-98	DECONTAMINATION FLUIDS USED:	NONE	_
SAMPLE TYPE:	grab	SAMPLE PRESERVATIVES:	HCL	
SAMPLE BOTTLE IDs:	BN-13-PANNO2	25		_
SAMPLE PARAMETERS:	VCC			<u>.</u>
COMMENTS AND OBSER	vations: <u>perist</u>	ultro sump		
			·	
				_

Site Name: Eastern Plume	Project No.: 2960047 Date: 11-12-98
Well ID: MW-334	Field Personnel: SD, SC

Parameter	6	7	8	9	10	11
Time (min.)	1055	1100	1109	1106	1109	
Depth to Water (ft)	14,57	16.59	16.58	14,68	16.62	
Purge Rate (L/min)	13	13	, 3	,3	13	
Volume Purged (L)	9.3	10.60	11,5	12.4	13.3	
рН	8,27	8.27	8,27	8.27	8.26	
Temperature (°C)	8.78	8.70	8.68	8.43	8.68	
Conductivity (µmhos/cm)	148	148	148	148	148	
Dissolved Oxygen (mg/L)	9,13	8.77	8-69	8.78	8.82	
Turbidity (NTU)	368	284	246	226	233	
Eh (mv)	126	-136	-131_	-131	-132	

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						
Volume Purged (L)						
рН						
Temperature (°C)						
Conductivity (µmhos/cm)						
Dissolved Oxygen (mg/L)						
Turbidity (NTU)		·				
Eh (mv)						·

COMMENTS AND OBSERVATIONS		 	•
	· · · ·		

Site Name: Well ID: Well Condition:	\overline{M}	5 Brunsu W-1104 3-000		Project Number: Well Lock Status: Weather:		1600:47. Locked in ±40	
Gauge Date: Sounding Method: Stick Up/Down (ft):		1/11/98 pe India 2.25	nator	Gauge Time: Measurement Ref Well Diameter (in		1058 TOC 7"	
Purge Date: Purge Method: Ambient Air VOCs (ppm):		111198 W Flow 0,0	υ	Purge Time: Field Personnel: Well Mouth VOC	Cs (ppm):	1100 100 00	8 FV
A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)		27,55 11.88 15.67	WELL VO	DLUME D. Well Volume C. Well Volume E. Three Well V	(L)	0.60° 9,48 28,4°	
Parameter Time (min.) Depth to Water (ft) Purge Rate (Vmin) Volume Purged (L) pH Temperature (°C) Conductivity (µmhos/cm) Dissolved Oxygen (mg/L) Turbidity (NTU) eH (mV)		Beginning 11.88 11.88 13.08 11.5 1.00 Ø	1 1109 1191 12 118 5,56 14,02 115 0.65 -675 215	2 1114 11.91 ,2 2.8 5.76 14.17 109 0.61 -6.68 208	3 1119 11.92 .2 3.8 5.84 14.25 107 0.58 -6.70 199	4 11.42 11.92 .2 4.8 5.89 14.31 104 0.63 -688 192	5 1179 11.92 , z 5,8 5,92 14.35 102 0.66 -6.78 187
Total Quantity of Water Rem Samplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Observations		19 FV 1/11/98 19 Stab 18 SiN-13 10 NOC	Decontain	Time (Start/End): ination Fluids Use eservatives:	ed: DT	30/1135 L 3-EP-D	

WELL I.D.: MW-1	I.D.: MW-NASB-212			BER: ATUS:	2960047 good sunny, 500				
	10-98 Lydicator J. 96	MEA	JGE TIME: ASUREMENT LL DIAMETE		1405 TOC				
PURGE METHOD:	1-10-96 ow Plow ————————————————————————————————————	FIEI	GE TIME: .D PERSON! .L MOUTH \		1409 50,50 Start: O End:O				
	w	ELL VOLUN	Æ.	•		•			
` '	A. WELL DEPTH (ft): 67.34 D. WELL VOLUME/FT (L): 34.74 B. DEPTH TO WATER (ft): 9.58 E. WELL VOLUME (L) (C*D): 34.74								
Parameter	Beginning	1	2	3	4	5			
Time (min)	1410	1413	1416	1420	1425	143c			
Depth to Water (ft)	9,58	9.66	9.66	9.66	9.66	9, 26			
Purge Rate (L/min)	0.2	2.2	0.2	0.2	0.2	0.2			
Volume Purged (L)	0.2	0.8	10.2	2,\$	3.4	4.4			
рН	6172	6.69	6,70	6.70	6.70	6.70			
Temperature (°C)	10.22	9.66	9,50	9.56	9.60	9,69			
Conductivity (µmhos/cm)	137	137	135	137	137	137			
Dissolved Oxygen (mg/L)	2.80	1.0	0,6	0.2	0.2	0.19			
Turbidity (NTU)	0	2	4	. 4	4	4			
Eh (mv)	20	25	23	15	14	13			
TOTAL QUANTITY OF WATER REM	OVED (L):(, 4	-						
SAMPLERS: <u>SD, SC</u>	SA	MPLING TII	ME (START/	END):	_1435-	เนนก			
SAMPLING DATE: 11-10-	4 0	CONTAMIN			NonE		_		
SAMPLE TYPE: <u>gra</u>	7	MPLE PRES			- HC L				
SAMPLE BOTTLE IDs: BN-13-E		·	•				_		
SAMPLE PARAMETERS: <u>VOC</u>		· ·					_		
COMMENTS AND OBSERVATIONS:	oh sheck	OK.	weeker	contrain	ovisent	trackel	_		
at treatment plan	<i>*</i>			1211-10-11		- 1, July			

A. WELL DEPTH (ft):

B. DEPTH TO WATER (ft):

C. LIQUID DEPTH (ft) (A-B):

FIELD RECORD OF WELL GAUGING, PURGING, AND SAMPLING

SITE NAME:	Fastern Plume	PROJECT NUMBER:	2960047
WELL I.D.:	P-106e	WELL LOCK STATUS:	- 900a
WELL CONDITION:	good	WEATHER:	sunny, 50°
GAUGE DATE: SOUNDING METHOD: STICK (P)DOWN (ft):	Slope indicator 2.53	GAUGE TIME: MEASUREMENT REF: WELL DIAMETER (in.):	1345
PURGE DATE:	11-11-98	PURGE TIME:	1404
PURGE METHOD:		FIELD PERSONNEL:	50,811
AMBIENT AIR VOCs (ppm)		WELL MOUTH VOCs (ppm):	Start: 0 End: 0

D. WELL VOLUME/FT (L):

E. WELL VOLUME (L) (C*D):

F. THREE WELL VOLUMES (L) (E*3):

Parameter	Beginning	1	2	3	4	5
Time (min)	1405	1410	1415	1520	1525	1530
Depth to Water (ft)	10,71	-				
Purge Rate (L/min)	-8	.6	.60	-60	.6	, <i>i</i> 5
Volume Purged (L)	B	3.8	6.8	9.8	13.8	25.8
pH	7,30	7.16	7117	7.31	7,38	7,32
Temperature (°C)	8.98	8.66	8.72	888	8.81	8.70
Conductivity (µmhos/cm)	89	94	97	98	98	98
Dissolved Oxygen (mg/L)	3.74	5.23	3.65	6.75	10.01	8.01
Turbidity (NTU)	326	151	128	18	14	フ
Eh (mv)	96	99	98	94.7	93	95

TOTAL QUANTITY OF W	'ATER REMOVED (L): _	2017	•
SAMPLERS:	SDIBA	SAMPLING TIME (START/END) :	1340-1345
SAMPLING DATE:	11-11-98	DECONTAMINATION FLUIDS USED:	Nont
SAMPLE TYPE:	grab	SAMPLE PRESERVATIVES:	<u>HCL</u>
SAMPLE BOTTLE IDs:	BN-13-EPD.	21	
SAMPLE PARAMETERS:			
COMMENTS AND OBSER	(VATIONS: penstal	etre-punge Rate 10m a	s possible
<u></u>			

Site Name: Eastern Hume	Project No.: 2960047 Date: 11-11-98
	Field Personnel: 572 (13.4)

Parameter	6	7	8	9	10	11
Time (min.)	1533	1536	15 39			
Depth to Water (ft)			10,95			
Purge Rate (L/min)	-6	. 6	16			
Volume Purged (L)	28.8	33.8	2\$.8			
pH	7.23	7.22	7,21			·
Temperature (°C)	8.68	8.59	8,58			
Conductivity (µmhos/cm)	98	97	97			
Dissolved Oxygen (mg/L)	3.92	3.61	3.59			
Turbidity (NTU)	4	4	3			
Eh (mv)	99	99	99			

Parameter	12	13	14	15	16	17
Time (min)						
Depth to Water (ft)						
Purge Rate (L/min)						
Volume Purged (L)			·			
рН						
Temperature (°C)						
Conductivity (µmhos/cm)						1 .
Dissolved Oxygen (mg/L)						
Turbidity (NTU)						
Eh (mv)		-				

COMMENTS AND OBSERVATIONS	

WELL I.D.: P		n Plyne PIII ood	WEL	PROJECT NUMBER: WELL LOCK STATUS: WEATHER:			39600-47 		
GAUGE DATE: 11-12-98 SOUNDING METHOD: Slope Indicate STICK UP/DOWN (ft):			Indicator	MEA	GE TIME: SUREMEN L DIAMET		12:1 100		
PUF	RGE DATE: RGE METHOD: BIENT AIR VOCs (ppm)	1-12-98 	FIEL	GE TIME: D PERSONI L MOUTH	NEL: VOCs (ppm):	5c	$\frac{(217)}{50}$ Start: O End: O		
٠	•		<u>y</u>	ELL VOLUM	E	•		•	
B.	WELL DEPTH (ft): DEPTH TO WATER (ft): LIQUID DEPTH (ft) (A-B)	_ 4	1.99 .52 .47	D. WELL V E. WELL V F. THREE	OLUME (L		3 3 3: 9-	550.089 315 0.41 530 1.31	6
j	Parameter		Beginning	1	2	3	4	5	
	Time (min)		1218		·				
	Depth to Water (ft)								
	Purge Rate (L/min)		0.4						
:	Volume Purged (L)		6.4						
	pН		6.92						
	Temperature (°C)		9.98						
	Conductivity (µmhos/cm)		102						
	Dissolved Oxygen (mg/L)		7,77						
	Turbidity (NTU)		214						
	Eh (mv)		- 20			·			
	AL QUANTITY OF WATE	er remo	· · · · 	O , 8 Ampling ti	ME (START	VEND):	1230-	-1237	_
SAN	IPLING DATE:	11-12-	98 D	ECONTAMIN	ATION FL	UIDS USED:	no	n e	
SAM	IPLE TYPE:	grab	SA	AMPLE PRES	ERVATIVE	is:	1+C	6	_
SAM	1PLE BOTTLE IDs:	N-13"	EPMWOZ						_
SAN	IPLE PARAMETERS:								_
	MENTS AND OBSERVAT			to guage 2 min -	<u> </u>		ng - pe Lecharg	enstaltic	
	s'ampled								

Site Name: Well ID: Well Condition:	P-132 Good		Project Number: Well Lock Status: Weather:		29600,47.7503 LOCKEd Bunlland ±40			
Gauge Date: Sounding Method: Stick Up Down (ft):	Slope Inc	dicator	Gauge Time: Measurement R Well Diameter (9" TOC OB/5			
Purge Date: Purge Method: Ambient Air VOCs (ppm):	11/11/98 1-ou Flou 0)	Purge Time: Field Personnel: Well Mouth VO		0848 F31FY 0			
A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)	B. Depth to Water (ft): C. Well Volume (L)							
Parameter Time (min.) Depth to Water (ft) Purge Rate (l/min) Volume Purged (L) pH Temperature (°C) Conductivity (µmhos/cm) Dissolved Oxygen (mg/L) Turbidity (NTU) eH (mV)	Beginning 0850 17,94 .7 .4 4.55 10.70 18 12.10 41 201	1 0855 17.94 1.4 5.11 10.50 14 11.05 34 198	2 0900 17.94 .2 3.4 5.50 10.77 23 10.99 37 302	3 09,05 18,03 ,2 3,4 569 11,03 03 10,92 003	4 0908 18.00 18.00 4,0 5,75 11.09 003	5 911 18.00 4,6 5.81 11,22 24 10, 19 8		
Total Quantity of Water Removed (L): Samplers: Sampling Date: Sample Type: Sample Bottle IDs: Sample Parameters: Comments and Observations: Sample Water Removed (L): Sampling Time (Start/End): DI HCL Sample Preservatives: HCL Sample Preservatives: VOC								

Site Name: Well ID:	Eastern Ew-01	Plume	Project Number:		2960047.7503 Locked		
Well Condition:	<u>6∞</u> d		Well Lock Status:		<u>Cloudy = 40</u>		
won condition.			Weather:		<u> </u>	10	
Gauge Date:	路11/9/	98			10.27		
Sounding Method:	Slopeinai		_ Gauge Time:	T. 0	1026 TOC		
Stick Up(Down)(ft):	Siepernare	(10)	Measurement				
Stick Up Down (ft): Well Diameter (in.):							
In n	100 	9190			NA		
Purge Date: Purge Method:	NA	1/14	Purge Time:				
			Field Personne		BA		
Ambient Air VOCs (ppm):			Well Mouth V	OCs (ppm):	()		
A Wall Daniel (A)	NA	WELL V	OLUME			·	
A. Well Depth (ft): B. Depth to Water (ft):	10,48		D. Well Volum	• •	NA		
• • • • • • • • • • • • • • • • • • • •	N 4		. C. Well Volum	• •	NA NA		
E. Liquid Depth (ft) (A-B)	70.7		. E. Three Well	Volumes (L)	NA		
Parameter	Beginning	l	2	3	4	5	
Time (min.)	10,28						
Depth to Water (fl)	10:48						
Purge Rate (l/min)	NA						
Volume Purged (L)	NA						
рН	6.86						
Temperature (°C)	6.89						
Conductivity (µmhos/cm)	122						
Dissolved Oxygen (mg/L)	9.55						
Turbidity (NTU)	1119			/:			
eH (mV)	194						
Total Quantity of Water Remove	ed(I): NA					1	
Samplers:	BIBA	Sampline 1	Γime (Start/End):		1030		
•	TITATAR	: :			T		
Sampling Date:	Glab		ination Fluids Us	ea: <u>D</u>	401		
Sample Type:		P-RIO	eservatives:				
Sample Bottle IDs:	700	1 - 1770	<u>~ 1 </u>				
Sample Parameters:	Flaw ra	te e	10				
Comments and Observations:	Flaw ra		10 gpm				
						· · · · · · · · · · · · · · · · · · ·	

Site Name:	MAS BRUMSWICK		Project Number:		29600,47,7503				
Well ID:	EW-2		Well Lock Status:		Locked				
Well Condition:	<u>6000</u>		. Weather:		Claudy ± 40				
Gauge Date:	NA		Gauge Time:		NA				
Sounding Method:	NA NA		Measurement R	ef:	NA				
Stick Up/Down (ft):	<u>NA</u>		Well Diameter (in.):	WA				
Purge Date:	NA		Purge Time:		NA	The support			
Purge Method:	NA		Field Personnel:		CS IBA				
Ambient Air VOCs (ppm):			Well Mouth VOCs (ppm):		NA				
		WELL V	OLUME						
A. Well Depth (ft):	NA	, , , , , , , , , , , , , , , , , , , ,	D. Well Volume	e/ft (L):	NA				
B. Depth to Water (ft):	NA NA		C. Well Volume		VA				
E. Liquid Depth (ft) (A-B)	FIW		E. Three Well V	• •	MA				
Parameter	Beginning	•	7	T	<u> </u>	T			
			2	3	4	5			
Time (min.)	1050 NA	 	 -		+				
Depth to Water (ft)	NA								
Purge Rate (I/min)	NA				<u> </u>	<u> </u>			
Volume Purged (L)	634								
рН	8,33					 			
Temperature (°C)	10133		· · · · · · · · · · · · · · · · · · ·						
Conductivity (µmhos/cm)	10.45								
Dissolved Oxygen (mg/L)	10,13								
Turbidity (NTU)	12/2					ļ			
eH (mV)	1919								
Total Quantity of Water Remov					<i>(= 1)</i>				
Samplers:	rs/BA	Sampling T	ime (Start/End):		1029				
Sampling Date:	11/9/198	Decontamin	nation Fluids Use	d:	DT				
Sample Type:	Grab	Sample Pre			1CL				
Sample Bottle IDs:	BN-13-EF	PICO	<u> 3@105</u>	<i>ک</i>	· · · · · · · · · · · · · · · · · · ·				
Sample Parameters:	YOU		·						
Comments and Observations: Flow rate @ 15 apm									
			·						

Site Name: Well ID:	EW-37			s:	29600 47.7503 Locked			
Well Condition:	<u>6000</u>		Weather:		Clary ± 40			
	NA							
Gauge Date:	Gauge Time:		NA					
Sounding Method:	N_	1	_ Measurement Re	of:	NA			
Stick Up/Down (ft):		1	Well Diameter (in.);		WH			
Purge Date:	NA	Δ.	Purge Time:		NA			
Purge Method:			_ Field Personnel:		K9 BA			
Ambient Air VOCs (ppm):			Well Mouth VO	Cs (ppm):	NA			
A Wall Donth (4)	NA	WELL V	OLUME	(0.41)	NA			
A. Well Depth (ff):	NA NA		D. Well Volume	• • -	NA			
B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)	- (1)		C. Well Volume		- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
E. Liquid Depth (II) (A-B)			E. Three Well V	olumes (L)				
								
Parameter	Beginning	1	2	3	4	5		
Time (min.)	1038		-					
Depth to Water (ft)	NA NA		+					
Purge Rate (l/min)	NA		 					
Volume Purged (L)			 					
pH	6.57 7.80		-					
Temperature (°C) Conductivity (µmhos/cm)	109		 					
Dissolved Oxygen (mg/L)	11.27		 		,			
Turbidity (NTU)	37		 					
eH (mV)	199		<u> </u>					
(CATAIN V)								
Total Quantity of Water Remov	red (L): NA							
Samplers:	BIBA	Sampling	Time (Start/End):	10)4 <i>2</i>			
Sampling Date:	1119198		ination Fluids Used	$\frac{D}{1}$	T			
Sample Type:	Grab		eservatives:	·	<u>CL</u>			
Sample Bottle IDs:		-RIOO		<u></u>				
Sample Parameters:	VOC							
Comments and Observations: Flow Rate @ 11 gpm								
			ال					
<u> </u>								

Site Name: Well ID: Well Condition:	NAS Brunsw EW-3 GOOD	nck	Project Number: Well Lock Status Weather:	s: :	29600,47,7503 Locked Cloudy = 40			
Gauge Date: Sounding Method: Stick Up/Down (ft):	AN AR		Gauge Time: Measurement Re Well Diameter (i		NA NA WF	A		
Purge Date: Purge Method: Ambient Air VOCs (ppm):	NA NA		Purge Time: Field Personnel: Well Mouth VO	 Cs (ppm):	NA K9 BA NA			
WELL VOLUME								
A. Well Depth (ft): B. Depth to Water (ft): E. Liquid Depth (ft) (A-B)	AN AN AN		D. Well Volume/fl (L): C. Well Volume (L) E. Three Well Volumes (L)			4		
					T			
Parameter Time (min.)	Beginning 1058	1	2	3	4	5		
Depth to Water (ft)	NA							
Purge Rate (l/min)	NA ·							
Volume Purged (L)	NA	· · · · · · · · · · · · · · · · · · ·						
рН	5.98			· · · · · · · · · · · · · · · · · · ·	<u> </u>			
Temperature (°C)	8.16		ļ	· · · · · · · · · · · · · · · · · · ·				
Conductivity (µmhos/cm)	198		ļ					
Dissolved Oxygen (mg/L)	9,98							
Turbidity (NTU)	433	···			. '			
eH (mV)	911							
Total Quantity of Water Remov	ved (L): NA							
Samplers:	KSIBA	Sampling 7	Time (Start/End):	110	0			
Sampling Date:	1119 198		ination Fluids Used		-			
Sample Type:	Grab		eservatives:	HC	L			
Sample Bottle IDs:	BN-13-EF							
Sample Parameters:	NOC					. •		
Comments and Observations:	FW	u Rato	@ N(DNE	·			

Site Name: Well ID: Well Condition:	NAS Brunsi EW-05 GOOD	wick	Project Number: 2960.47, 7503 Well Lock Status: Locked Weather: Cloudy ± 40				
Gauge Date: Sounding Method: Stick Up/Down (ft):	PA AM AKI		Gauge Time: Measurement Ref: Well Diameter (in.):				
Purge Date: Purge Method: Ambient Air VOCs (ppm):	NA NA		Purge Time: Field Personnel: Well Mouth VOCs (ppm): NA CS BA NA NA				
WELL VOLUME							
Parameter	Beginning	l.	2	3	4	5	
Time (min.)	1105						
Depth to Water (ft)	NA		·				
Purge Rate (Vmin)	NΑ						
Volume Purged (L)	NA						
pH	6.47						
Temperature (°C)	8 23						
Conductivity (µmhos/cm)	89	·····					
Dissolved Oxygen (mg/L)	7,74	·					
Turbidity (NTU)							
eH (mV)	198						
Total Quantity of Water Remove	ed (L): NA						
Samplers:	KRIBA	Sampling T	ime (Start/End):	110	8		
Sampling Date:	1119198	•	nation Fluids Used		-		
Sample Type:	Grab	Sample Pre		HC	L		
Sample Type: Sample Bottle IDs:	BN-13-E				 -		
Sample Parameters:	VOC						
Comments and Observations:		rate @	20 apm				
Comments and Observations:	1 1000	IUIC C	ac you				

Site Name:	NAS BUOSU	icl	Project Number	··	29600,47	75 <i>0</i> 3
Well ID:	Easternaume	Influent	Well Lock Statu		NA	
Well Condition:	NA		. Weather:		MA	
Gauge Date:	NA		Gauge Time:		NA	
Sounding Method:	NI	}	Measurement R	ef:	N	A
Stick Up/Down (ft):	$\overline{\mathbb{A}}$	<u> </u>	Well Diameter (in.):	W	A
L						
Purge Date:	NA NA		Purge Time:		NA	
Purge Method:	NF.	rs	Field Personnel:		K3/BF	Į.
Ambient Air VOCs (ppm):	Mr	H. 0'0	Well Mouth VO	Cs (ppm):	NA	
		WELL V	OLUME			
A. Well Depth (ft):	NA		D. Well Volume	e/fl (L):	NA	
B. Depth to Water (ft):	NF.		C. Well Volume	• •	NF	7
E. Liquid Depth (ft) (A-B)	<u> </u>	}	E. Three Well V		WA	
						
Parameter	Beginning		2	3	T	T
				3	4	5
Time (min.)	1205 NA	· · · · · · · · · · · · · · · · · · ·		•	<u> </u>	
Depth to Water (ft)	NA		<u> </u>			
Purge Rate (I/min)	NA NA		<u> </u>		 	
Volume Purged (L)	6.63	 			·	
pH (CO)	11.69					
Temperature (°C) Conductivity (µmhos/cm)	146				<u> </u>	
Dissolved Oxygen (mg/L)	11.30					
Turbidity (NTU)	11130					·
	255	·····				
eH (mV)	<u> </u>					<u></u>
	100	.;;:::::::::::::::::::::::::::::::::::				
Total Quantity of Water Rem				1 -	217	
Samplers:	<u> </u>		ime (Start/End):	~ "	<u>310</u>	
Sampling Date:	11/9/98		nation Fluids Used	1: <u> </u>		
Sample Type:	<u>600</u>	Sample Pre		<u> </u>		
Sample Bottle IDs:	BN-13-EP	-KIWI	0	**************************************		771 - 7
Sample Parameters:	YUC		·		·	
Comments and Observations:						
			<u> </u>	 		
		~···	·			

Site Name:		SWICK	Project Number	· _	29600.47.7503		
Well ID:		Ticalment Pont Effluent			NH		
Well Condition:	NA	Weather:	-	W	H		
Gauge Date:	NA NA		Gauge Time:	-	NA		
Sounding Method:	NP.	<u>r</u>	Measurement R	tef:		N-+	
Stick Up/Down (ft):	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	T	Well Diameter ((in.):		HK	
<u> </u>	NA					· · ·	
Purge Date:	NE	<u>\</u>	Purge Time:	-	r.g.	BA	
Purge Method:	<u> </u>	<u>'</u>	Field Personnel:		N		
Ambient Air VOCs (ppm):			Well Mouth VC	Cs (ppm):			
	<u> </u>	WELL VO	OLUME				
A. Well Depth (ft):	NA	**************************************	D. Well Volume	e/ft (T.):	NF	.	
B. Depth to Water (ft):	NA	C. Well Volume		18	IA.		
E. Liquid Depth (ft) (A-B)	AU	N I I I				SA.	
Zi. Ziquio ii opia (ci) (ci) zi			E. Three Well	· (10111100 (2) 22			
Parameter	Beginning	·····	2	3	4	5	
Time (min.)	1135						
Depth to Water (ft)	NA						
Purge Rate (I/min)	NA						
Volume Purged (L)	NA						
pΗ	6.79						
Temperature (°C)	12.48						
Conductivity (µmhos/cm)	153						
Dissolved Oxygen (mg/L)	14.06						
Turbidity (NTU)	3						
eH (mV)	252						
Total Quantity of Water Remo	oved (L): <u>NA</u>						
Samplers:	RSIBE	Sampling T	ime (Start/End):		140		
Sampling Date:	1119198	Decontamin	nation Fluids Use	:d:	$\frac{1}{2}$	· · · · · · · · · · · · · · · · · · ·	
Sample Type:	<u> </u>	Sample Pre		\.c =	NA ZO	3	
Sample Bottle IDs:	BV-13-E	P-TE00	1 MS	MSD	BN-13-EF	-TEXDI	
Sample Parameters:	NOC	 			······································		
Comments and Observations:							
·							
			·				

Appendix A.3

Field Record of Surface Water and Sediment Sampling Forms

FIELD N			ORFACE W	ALEKAN	D SEDIME			
Site Name: Sit		£ 7				29600,47,75 1	03	
Sample Location ID:		,-04			Date: 11/5/98	8		
Sampling Time:	245	Start:	End	i:	Sample Team Members: 8#,50			
SURFACE WATER IN	NFORMATI	ON					•	
V 7··) River) Seep le	()N ()B ()P (X) Deco ()Is ()A ()D	oment Used for Collegener, Grab into Bottle one, Grab into Bottle omb Sampler ump Collegener of the Collegene of the Collegener of the Collegener of the Collegener of the Col	Jar	Water Quality Parameters () Temperature 7.47°C () Conductivity 92 \(\mu\) mmhs/cm () ph \(\omega \omega 7\) units () Dissolved oxygen 3.39 mg/L () Turibidity 66 NTU () Eh \(\text{105}\) mv			
Velocity Measurements Obtained? (N) No () Yes, See Flow Measurement Data Record Field QC Data: () Field Duplicate Collected Sample Location Sketch: Method Used: Duplicate ID								
SEDIMENT INFORMA			· ·					
Type of Sample Collected: () Discrete () Composite Sediment Type: () Clay () Sand () Stainless Steel Split Spoon () Dredge () Hand Spoon/Trowel () Aluminum Pans () Sand () Stainless Steel Bucket () Organic () Gravel				poon	Decontamination Fluids Used: () Isopropyl Alcohol () ASTM Type II Water () Deionized Water () Liquinox Solution () Hexane () HNO, Solution () Potable Water () None			
Sample Observations: () Odor () Color ()								
Field QC Data: () Fi	eld Duplicat uplicate ID	e Collected		() MS/M	ISD			
SAMPLES COLLECTE	ED					···		
	М	atrix						
Check if Required at this Location	Surface Water	Sediment	Check if Preserve with Acid/Base		Check if Sample Collected	Sample Bot	tle IDs	
VOC	レ		V	Doni			0004 · ·	
TALMetal3	V		/	₽ L	V	11	11	
	<u> </u>					L		
NOTES/SKETCH								
								

Site Name: 51+e3 1+3			Project Number: 29600,47,7503	
	<u> </u>		Date: 11/5/98	
Sample Location ID: 5 W-C	, <u>'</u>		00 010	
Sampling Time: (215	Start:	End:	Sample Team Members: 5C B/T	
SURFACE WATER INFORMATION				
Type of Surface Water: (9) Stream (1) River (1) Pond/Lake (1) Seep	Equipment Used for () None, Grab into () Bomb Sampler () Pump CV A education Florent and Contamination Florent Equipment Used for the Contamination Florent Equipment Equipment Used for the Contamination Florent Equipment Equipme	Bottle	Water Quality Parameters () Temperature 7.45 °C () Conductivity 7.3 μmhs/cm () ph 6.71 units () Dissolved oxygen 13.16 mg/L () Turibidity 26 NTU	,
Water Depth and Sample Location (ft) Depth of Sample from Top of Water (ft)	() Isopropyl Alcoh () ASTM Type II ' () Deionized Wate () Hexane	ol Water	() Turibidity 36 NTU () Eh 11 mv	·
Top of water (11)	() HNO, Solution () Potable Water (M) None	ı		
Velocity Measurements Obtained? (水) N	lo () Yes, See Flow?	Measurement Data	Record	
Field QC Data: () Field Duplicate C Duplicate ID () MS/MSD		Location Sketch:	Method Used: () Winkler () Probe	
SEDIMENT INFORMATION				
Type of Sample Collected: () Discrete () Composite	Equipment Used for () Gravity Corer () Stainless Steel () Dredge	Split Spoon	Decontamination Fluids Used: () Isopropyl Alcohol () ASTM Type II Water () Deionized Water	
Sediment Type: () Clay () Sand () Organic () Gravel	() Hand Spoon/Tr () Aluminum Pan () Stainless Steel () Stainless Steel ()	s Bucket ·	() Liquinox Solution () Hexane () HNO, Solution () Potable Water () None	
Sample Observations: () Odor				
() Color	Collected		MS/MSD	
SAMPLES COLLECTED		·		
Matr	ix			

	М	atrix	:		·	
Check if Required at this Location	Surface Water	Sediment	Check if Preserved with Acid/Base	Volume Required	Check if Sample Collected	Sample Bottle IDs
Voc	1		V	Womi		BN13875W003
TALSIAMENTS	V			AL.		11 (1

OTES/SKETCH			
		•	
		•	

FIELD RECORD OF SURFACE WATER AND SEDIMENT SAMPLING									
Site Name: Site					1	Project Number:	09600477503		
Sample Location ID:	<u>5w</u>	-08			1	Date: 11/5/98			
Sampling Time:	1700	Start:		End:		Sample Team Members: SC B A			
SURFACE WATER IN	FORMATIO	N							
Water Depth and Sample Location (ft) Depth of Sample from Top of Water Ova	(ft)	() No () Bo () Pu CX) Z Decon () Iso () AS () De () He () Ho () Po () No	tamination Flancopyl Alcohormation Flancopyl Alcohormation Flancopyl Alcohormation Flancopyl Alcohormatics Water Special Plancopyl Alcohormatics Water Special Plancopyl Alcohormatics Flancopyl Alcoh	Bottle O DO (uids Used: ol Vater		Water Quality Parameters () Temperature 7.35 °C () Conductivity 1			
Velocity Measurements	Obtained? 🖟)No ()Ye	s, See Flow M	leasureme	nt Data Recor	d			
Field QC Data: (X) Field Duplicate Collected Sample Location Sketch: Method Used: Duplicate ID 8 135 5 10 10 10 10 10 10 10									
SEDIMENT INFORMATION									
Type of Sample Collected: (·) Discrete () Composite Sediment Type: () Clay () Sand () Stainless Steel Split Spoon () Dredge () Hand Spoon/Trowel () Aluminum Pans () Sand () Stainless Steel Bucket () Organic () Gravel					Decontamination Fluids Used: () Isopropyl Alcohol () ASTM Type II Water () Deionized Water () Liquinox Solution () Hexane () HNO, Solution () Potable Water () None				
Sample Observations: () Odor () Color									
Field QC Data: () Field Duplicate Collected () MS/MSD Duplicate ID									
SAMPLES COLLECTE	ED								
	Ма	ıtrix	- - ,				·		
Check if Required at this Location	Surface Water	Sediment	Check if Pr		Volume Required	Check if Sample Collected	Sample Bottle IDs		
VOC	~		V		Womi	V	BNIBSISWOOD		
TALElements	V		V		1L	V	11		
NOTECTION									
NOTES/SKETCH									

NOTES/SKETCH

Site Name: 51+	-10	+3		Project Number: 29600,47,7503				
Sample Location ID:	Sw	PO-0			Date: 11/5/	ે જ		
Sampling Time:	140	Start:	End:		Sample Team Members: BA,SC			
SURFACE WATER IN	FORMATI	ON						
) River () None, Grab into Bottle) Seep () Bomb Sampler () Pump (X) A ear (DA+0 Jay				Water Quality Param () Temperature 7. () Conductivity (() ph 6 8 units () Dissolved oxyge	09 °C μmhs/cm		
Water Depth and Sampl Location (ft) Depth of Sample from Top of Water Ord	le Decontamination Fluids Used: () Isopropyl Alcohol () ASTM Type II Water () Deionized Water (ft) () Hexane				() Turibidity 12 mv	7 NTU		
			NO, Solution stable Water one					
Velocity Measurements	Obtained? (X) No () Yo	es, See Flow Measure	ment Data Reco	rd			
Field QC Data: () Field Duplicate Collected Duplicate ID () Yes (X) MS/MSD Sample Location Sketch: () Yes					Method U () Wink () Probe	ler		
SEDIMENT INFORMA	ATION				•	VOC TAL Elements		
Type of Sample Collected: () Discrete () Composite Sediment Type: () Clay () Sand () Stainless Steel Split Spoon () Dredge Sediment Type: () Clay () Aluminum Pans () Sand () Stainless Steel Bucket () Organic () Gravel					Decontamination Floating () Isopropyl Alcoho () ASTM Type II W () Deionized Water () Liquinox Solution () Hexane () HNO, Solution () Potable Water () None	ol Vater		
Sample Observations: () Odor () Color ()								
Field QC Data: () Fi	eld Duplicat uplicate ID _	e Collected	·	() MS/M	ISD			
SAMPLES COLLECTE	ED	·						
	М	atrix						
Check if Required at this Location	Surface Water	Sediment	Check if Preserved with Acid/Base	Volume Required	Check if Sample Collected	Sample Bottle IDs		
Voc	V		V	Docul	V	BN13515W001		
TALElement	V	· ·	V	aL	V	i, ii		

			INFACE WA	ILKAN	DOEDIMEN	O SAMI LING		
Site Name: East	ern f	Plume				9600.47.7503		
Sample Location ID:					Date: 111519	8		
Sampling Time:	100	Start:	End:	·	Sample Team Members: FV SC BM			
SURFACE WATER IN	FORMATI	ON						
(1)	(am () River () None, Grab into Bottle (ad/Lake () Seep () Bomb Sampler () Pump (X) ACACATO JOY Depth and Sample Decontamination Fluids Used: () Isopropyl Alcohol () ASTM Type II Water () Deionized Water () HNO, Solution () Potable Water () None					Water Quality Parameters () Temperature 6 2 °C () Conductivity 1 \(\mu \) \(\mu		
Velocity Measurements	Obtained? (() Yo	es, See Flow Measureme	ent Data Recoi	rd br			
	eld Duplicat uplicate ID _ S/MSD		Sample Location S () Yes () No	Sketch:	Method Used: () Winkler () Probe			
SEDIMENT INFORMA	ATION		·				·-· ······ ·	
Type of Sample Collected: () Discrete () Composite () Stainless Steel Split Spoon () Dredge Sediment Type: () Clay () Aluminum Pans () Sand () Organic () Organic () Gravel Equipment Used for Collection: () Gravity Corer () Stainless Steel Split Spoon () Dredge () Hand Spoon/Trowel () Aluminum Pans () Stainless Steel Bucket () Organic () Stainless Steel Auger				Decontamination Fluids Used: () Isopropyl Alcohol () ASTM Type II Water () Deionized Water () Liquinox Solution () Hexane () HNO, Solution () Potable Water () None				
Sample Observations: () Odor () Color ()								
Field QC Data: () Figure Discourse	eld Duplicat uplicate ID _	e Collected		() MS/M	ISD			
SAMPLES COLLECTE	ED.							
Check if Required	Surface	atrix	Check if Preserved	Volume	Check if Sample			
at this Location	Water	Sediment	with Acid/Base	Required	Collected	Sample Bottle IDs		
4	V		<u> </u>	HOMI	V.	BN13EPSW004		
				 				
				<u> </u>				
NOTES/SKETCH								

Site Name: Eastern Pl	ome		Project Number: 29600.47,7563				
Sample Location ID: 500-11		· · · · · · · · · · · · · · · · · · ·	Date: 11/5/98	Date: 11/5/98			
Sampling Time: 1040	Start:	End:	Sample Team Members: BASC FV				
SURFACE WATER INFORMATION							
Type of Surface Water: (*) Stream (*) River (*) Pond/Lake (*) Seep	Equipment Used fo () None, Grab into () Bomb Sampler () Pump (Y) Agaicat	Bottle	Water Quality Parameters () Temperature 5.76 °C () Conductivity 5 7 µmhs/cm () ph 6.85 units () Dissolved oxygen 11.86 mg/L				
Water Depth and Sample Locationi (ft) Depth of Sample from Top of Water O \(\frac{\Q}{\Q} \) (ft)	Decontamination F () Isopropyl Alcoh () ASTM Type II () Deionized Wate () Hexane () HNO, Solution () Potable Water () None	luids Used: ool Water r	() Turibidity 5 NTU () Eh 13) mv				
Velocity Measurements Obtained? ((x)) No	() Yes, See Flow M	Aeasurement Data Re	cord	· .			
Field QC Data: () Field Duplicate Coll Duplicate ID () MS/MSD	Sample Sample () Yes () No	Location Sketch:	Method Used: () Winkler () Probe				
SEDIMENT INFORMATION							
Type of Sample Collected: () Discrete () Composite Sediment Type: () Clay () Sand () Stainless Steel Split Spoon () Dredge () Hand Spoon/Trowel () Clay () Salmless Steel Bucket () Organic () Stainless Steel Auger () Gravel			Decontamination Fluids Used: () Isopropyl Alcohol () ASTM Type II Water () Deionized Water () Liquinox Solution () Hexane () HNO, Solution () Potable Water () None				
Sample Observations: () Odor () Color							
Field QC Data: () Field Duplicate Coll Duplicate ID	ected	() MS	/MSD				
SAMPLES COLLECTED							
Matrix Check if Required Surface	Check if P						
at this Location Water Sed	iment with Aci		1	Sample Bottle IDs			
		120m	N N	BN13813W003 1			
NOTES/SKETCH							

Site Name: East	tern P	lune			Project Number: 29 600 47,7503		
. Sample Location ID:					Date: 1115198		
Sampling Time:	1000	Start:		End:	Sample Team Members: SCBHFV		
SURFACE WATER I	NFORMATIC	אכ				,	
	: () River () Seep	(%) No () Bo () Pu	ment Used for Cone, Grab into Boomb Sampler	ottle	Water Quality Param () Temperature 5 () Conductivity 5 () ph 674 unit	8	
Location (ft) () Isopropyl () ASTM T			stamination Fluid propyl Alcohol STM Type II Wa cionized Water	ds Used:	() Dissolved oxyge () Turibidity 15 () Eh 120 mv	NTU	
Top of Water <u>の、。</u>	_ (ft)		NO, Solution table Water				
Velocity Measurements	s Obtained? ()	≬ No ()Ye	s, See Flow Mea	asurement Data Reco	ord		
T.	Field Duplicate Duplicate ID MS/MSD		Sample Loc () Yes () No	cation Sketch:	Method Used: () Winkler () Probe		
SEDIMENT INFORM	IATION				 .	~(J =	
Type of Sample Collected: () Discrete () Composite Sediment Type: () Clay () Stainless Steel Split Spl				ollection:	Decontamination Flo		
() Composite Sediment Type: () Clay () Sand () Organic		() Sta () Dra () Ha () Ala () Sta () Sta	uinless Steel Spli edge nd Spoon/Trowe uminum Pans uinless Steel Buc	el ket	() Isopropyl Alcoho () ASTM Type II V () Deionized Water () Liquinox Solutio () Hexane () HNO, Solution () Potable Water () None	Vater r	
() Composite Sediment Type: () Clay () Sand () Organic		() Sta () Dra () Ha () Ala () Sta () Sta	uinless Steel Spli edge nd Spoon/Trowe uminum Pans uinless Steel Buc	el ket	() ASTM Type II V () Deionized Water () Liquinox Solutio () Hexane () HNO ₃ Solution () Potable Water	Vater r	
Sediment Type: () Clay () Sand () Organic () Gravel Sample Observations: () Odor () Color () Color	Field Duplicate Duplicate ID _	() Sta () Dro () Ha () Sta () Sta () Sta ()	uinless Steel Spli edge nd Spoon/Trowe uminum Pans uinless Steel Buc	el ket	() ASTM Type II V () Deionized Water () Liquinox Solutio () Hexane () HNO ₃ Solution () Potable Water () None	Vater r	
Sediment Type: () Clay () Sand () Organic () Gravel Sample Observations: () Odor () Color () Color	Ouplicate ID _	() Sta () Dro () Ha () Sta () Sta () Sta ()	uinless Steel Spli edge nd Spoon/Trowe uminum Pans uinless Steel Buc	el ket cer	() ASTM Type II V () Deionized Water () Liquinox Solutio () Hexane () HNO ₃ Solution () Potable Water () None	Vater r	
Sediment Type: () Clay () Sand () Organic () Gravel Sample Observations: () Odor () Color () Color Field QC Data: () F	Ouplicate ID	() Sta () Dro () Ha () Sta () Sta () Sta ()	uinless Steel Spli edge nd Spoon/Trowe uminum Pans uinless Steel Buc	el ket cer	() ASTM Type II V () Deionized Water () Liquinox Solutio () Hexane () HNO ₃ Solution () Potable Water () None	Vater r	
Sediment Type: () Clay () Sand () Organic () Gravel Sample Observations: () Odor () Color () Color Field QC Data: () F	Ouplicate ID	() Sta () Dro () Ha () Alu () Sta () Sta ()	uinless Steel Spli edge nd Spoon/Trowe uminum Pans uinless Steel Buc	el ket ger () MS/N	() ASTM Type II V () Deionized Water () Liquinox Solutio () Hexane () HNO ₃ Solution () Potable Water () None	Vater r	
Sediment Type: () Clay () Sand () Organic () Gravel Sample Observations: () Odor () Color () Color Field QC Data: () F SAMPLES COLLECT Check if Required	Ouplicate ID	() Sta () Dro () Ha () Alo () Sta () Sta ()	check if Presc	cket ser () MS/N	() ASTM Type II V () Deionized Water () Liquinox Solutio () Hexane () HNO, Solution () Potable Water () None ASD Check if Sample	Vater	
Sediment Type: () Clay () Sand () Organic () Gravel Sample Observations: () Odor () Color () Color Field QC Data: () F SAMPLES COLLECT Check if Required	Ouplicate ID	() Sta () Dro () Ha () Alo () Sta () Sta ()	check if Press with Acid/B	el ket ket ker () MS/M	() ASTM Type II V () Deionized Water () Liquinox Solutio () Hexane () HNO ₃ Solution () Potable Water () None ASD Check if Sample Collected	Sample Bottle IDs	

Site Name: 505	tern!	Plima	2		Project Number: 29600147,7563			
. Sample Location ID:					Date: 11/5/98			
	113	Start:	End:		Sample Team Member	~ ~ ~	вн	
SURFACE WATER IN	FORMATIC	ON .	•				•	
	Stream () River () None, Grab into Bottle) Pond/Lake () Seep () Bomb Sampler () Pump					cters 77 °C 3 µmhs/cm		
Water Depth and Sample Location (ft)		() Iso () AS	A CA CA もの Jay ntamination Fluids Used: opropyl Alcohol STM Type II Water	Ì:	() Dissolved oxygen () Turibidity 16 () Eh 13 1 mv	NTU mg/L		
Depth of Sample from Top of Water O 2	(ft)	() He () HD	NO ₃ Solution otable Water					
Velocity Measurements	Obtained?	χ/Nο () Yα	es, See Flow Measureme	ent Data Recor	nd			
	ield Duplicate uplicate ID <u>E</u> IS/MSD	te Collected Bいろとわい	Sample Location Si 2 YO () Yes () No	ketch:	Method Used: () Winkler () Probe		VOC	
SEDIMENT INFORMA	ATION	,	,				<u> </u>	
() Discrete () Composite Sediment Type: () Clay () Sand	() Composite () Stainless Steel Split Spoon () Dredge Sediment Type: () Hand Spoon/Trowel () Aluminum Pans () Clay () Aluminum Pans				Decontamination Flui () Isopropyl Alcohol () ASTM Type II W () Deionized Water () Liquinox Solution () Hexane () HNO, Solution () Potable Water	l ater		
() Organic () Gravel		()	ainless Steel Auger		() None			
Sample Observations: () Odor () Color ()								
Field QC Data: () Fi		te Collected		() MS/M	ISD	:		
SAMPLES COLLECTE	ΣD						·	
	Ma	atrix		!				
Check if Required at this Location	Surface Water	Sediment	Check if Preserved with Acid/Base	Volume Required	Check if Sample Collected	Sampl	e Bottle IDs	
V	W		W	120ml	W	BNIZEF	² 5w∞5	
V.	4		V	120ml	V	BN132P		
			1			1		

NOTES/SKETCH	 	 		
		 	 <u> </u>	

Site Name: &	stern	Pluma	<u>e</u>		Project Number: 29 660 47.7563			
Sample Location ID:	:5W	,-14			Date: 11/5/9	8		
Sampling Time:	1025	Start:	End:		Sample Team Members: BA,SC FV			
URFACE WATER II	VFORMATI	ON						
•	:) River) Seep	() No () Bo () Po			Water Quality Parameters () Temperature 6.64 °C () Conductivity 82 µmhs/cm () ph 6.74 units			
Vater Depth and Sample Occation 2.5 (ft) Decontamination Fluids Used: () Isopropyl Alcohol () ASTM Type II Water () Deionized Water () HNO ₃ Solution () Potable Water () None					() Dissolved oxygen 1139 mg/L () Turibidity 18 NTU () Eh 126 mv			
elocity Measurements	; Obtained?	√) No () Yo	es, See Flow Measurer	ment Data Reco	rd			
		te Collected	Sample Location () Yes () No	ı Sketch:	Method Used: () Winkler () Probe			
SEDIMENT INFORM	ATION							
Type of Sample Collected: () Gravity Corer () Composite () Dredge () Dredge () Hand Spoon/Trowel () Clay () Aluminum Pans () Sand () Organic () Stainless Steel Bucket () Gravel () Gravel () Gravel () Equipment Used for Collection: () Gravity Corer () Hand Spoon/Trowel () Aluminum Pans () Stainless Steel Bucket () Stainless Steel Auger ()					Decontamination Flor () Isopropyl Alcoho () ASTM Type II V () Deionized Water () Liquinox Solution () Hexane () HNO, Solution () Potable Water () None	ol Water r		
Sample Observations:) Odor) Color		:						
	ield Duplicate			() MS/M	ISD			
SAMPLES COLLECTI	ED							
	M	atrix						
Check if Required at this Location	Surface Water	Sediment	Check if Preserved with Acid/Base	Volume Required	Check if Sample Collected	Sample Bottle IDs		
				120ml	W	BU-13-EP-SWOO2		
·	-	4 -	4	1	1			
				1				

Appendix A.4

Field Record of Seep Sampling Forms

Site Name: Site S	17.5	Project Number: AGCOOT 1, 1303			
Sample Location ID: Seep	0-01	Date: 11/5/98	Ì		
Sampling Time:	Stat: 1315 Sed 1320	Sample Team Members: 3C, BA			
SURFACE WATER INFORMATION	•		•		
Type of Surface Water: () Stream () River () Pond/Lake () Seep	Equipment Used for Collection: () None, Grab into Bottle () Bomb Sampler () Pump () dedicated jax	Water Quality Parameters () Temperature & 47°C () Conductivity 517 \mumber \text{µmhs/cm} () ph \(\text{\tilit{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\texi{\text{\texi{\texi{\texi{\texi\tex{\texi{\texi{\text{\texi{\text{\texi{\texi{\texi{\texit{\tert{\te			
Water Depth and Sample Location 0.5 (ft) Depth of Sample from Top of Water 0.2 (ft)	Decontamination Fluids Used: () Isopropyl Alcohol () ASTM Type II Water () Deionized Water () Hexane	() Turibidity 1743 NTU () Eh 129 mv			
	() HNO, Solution () Potable Water (N) None				
Velocity Measurements Obtained? (X)	No () Yes, See Flow Measurement Data Re	cord			
Field QC Data: (X) Field Duplicate (C) Duplicate ID 8.6 () MS/MSD	Collected Sample Location Sketch: UIBSILT*O!() Yes ()) No	Method Used: () Winkler () Probe			
SEDIMENT INFORMATION					
Type of Sample Collected: () Discrete (x) Composite Sediment Type: () Clay (y) Sand () Organic () Gravel	Equipment Used for Collection: () Gravity Corer () Stainless Steel Split Spoon () Dredge (X) Hand Spoon/Trowel () Aluminum Pans () Stainless Steel Bucket () Stainless Steel Auger (X) Stainless Steel Auger	Decontamination Fluids Used: (N) Isopropyl Alcohol () ASTM Type II Water (N) Deionized Water (M) Liquinox Solution () Hexane () HNO, Solution () Potable Water () None	·		
Sample Observations: () Odor () Octobrown () Organic S Field QC Data: () Field Duplicate (Collected () M:	S/MSD			
Duplicate ID 8	LOXTILEEIU				
SAMPLES COLLECTED					

	M	atrix	·			·
Check if Required at this Location	Surface Water	Sediment	Check if Preserved with Acid/Base	Volume Required	Check if Sample Collected	Sample Bottle IDs
VOC TALmetals	X		A .	120mL/	W	BNI3SILTSWI /
VOC TALM etals		X.		802	/	BN1331LTSD1

NOTES/SKETCH				
	· · · · · · · · · · · · · · · · · · ·		•	
			•	
		,		
		4		
1			 	

Site Name: 5H						Project Number: 0	7960147,7503
Sample Location ID:	See	60-03		Date: 11/5/98			
Sampling Time:		Stort:	mone	340	Sample Team Memb	ers: SC, BA	
SURFACE WATER IN	FORMATIO	אי			·		
Type of Surface Water: () Stream () River () None, Grab into Bottle () Pond/Lake () Seep () Bomb Sampler () Pump						Water Quality Param () Temperature () Conductivity () ph unit () Dissolved oxyge	°C μmhs/cm
						() Dissolved oxygenmg/L () TuribidityNTU () Ehmv [NSUFFICIENT water	
elocity Measurements (Obtained? () No () Ye	s, See Flow N	Aeasureme	nt Data Reco	rd	·
		Collected	Sample I () Yes () No	ketch:	Method Used: () Winkler () Probe		
EDIMENT INFORMA	TION		· · · · · · · · · · · · · · · · · · ·	-		· <u></u> · · · · · · · · · · · · · · · · · ·	
Type of Sample Collected: Equipment Used for Collection: Decontamination Fluids Used: () Discrete () Gravity Corer () Isopropyl Alcohol () Composite () Stainless Steel Split Spoon () ASTM Type II Water () Dredge () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Decontamination Fluids Used: () ASTM Type II Water () Liquinox Solution () Hexane () HNO ₃ Solution () Potable Water () Potable Water () Potable Water () None							
iample Observations:) Odor Vi Color OK 6		oran	95				
Field QC Data: () Fie	ld Duplicate	Collected			(∕) MS/M	ISD	
SAMPLES COLLECTE							
AMPLES COLLECTE	Mai						
Check if Required	Surface		Check if Pr		Volume Required	Check if Sample Collected	Sample Bottle IDs
at this Location Water Sediment with Acid/Base Require Voc 7 ALmodols Voc 7 ALmodols Voc 7 ALmodols						V	BNI351LTSDQ
				,			
		I		····	!		
OTES/SKETCH							
							•

FIELD R	ECOR	D OF S	URFACE	WA	TER AN	D SEDIMEN	NT SAMPLING		
Site Name: 51	+65	1+3					7603 H		
Sample Location ID:		- p-0	14			Date: 11/5/98			
Sampling Time:		Stan:	21345	इति । स्तर्पः ।	350	Sample Team Members: BA, SC			
SURFACE WATER IN	FORMATI	ON							
Type of Surface Water: () Stream () River () None, Grab into Bottle () Pond/Lake () Seep () Bomb Sampler () Pump						Water Quality Parameters () Temperature 7.65°C () Conductivity 773 μmhs/cm () ph 6.38 units			
Water Depth and Sampl Location (ft	c)	Deco	ntamination Floopropyl Alcoho	aids Used of	l	() Dissolved oxyge () Turibidity 1105 () Eh 135 mv	NTU IIIg/L		
Depth of Sample from Top of Water 6.2	() ASTM Type II Water ample from () Deionized Water								
Velocity Measurements Obtained? (*) No () Yes, See Flow Measurement Data Record									
Field QC Data: () Field Duplicate Collected Duplicate ID () MS/MSD Sample Location Sketch: () Yes () No						Method Used: () Winkler () Probe			
SEDIMENT INFORMATION									
Type of Sample Collected: () Discrete () Composite Sediment Type: () Clay () Clay Sand () Organic () Stainless Steel Split Spoon () Dredge () Aluminum Pans () Stainless Steel Bucket () Organic () Stainless Steel Bucket () Gravel					1	Decontamination Fluids Used: (1) Isopropyl Alcohol (1) ASTM Type II Water (2) Deionized Water (3) Liquinox Solution (1) Hexane (1) HNO, Solution (1) Potable Water (1) None			
Sample Observations: () Odor () Color Orang	e brow	~							
Field QC Data: () Fig	eld Duplicat uplicate ID _	e Collected			() MS/M	SD			
SAMPLES COLLECTE	D.				·				
	Ma	atrix				,			
Check if Required at this Location	Surface Water	Sediment	Check if Pre with Acid/		Volume Required	Check if Sample Collected	Sample Bottle IDs		
VOCT ALMAS	V		V		Woml	V	BN1331 L75Wa	./	
VOCTAL metal 3		V			802	V	BUBSILTSOB		
NOTES/SKETCH									

									
Site Name: 51+	es 1+	3				Project Number: 2	19600:47,7503		
Sample Location ID:	Seec	o-05				Date: 115/	98		
Sampling Time:	,	Start:	المصلدات	End: 1	46S	Sample Team Member	oers: BA,SC		
SURFACE WATER IN	FORMATIC	ON NC							
Type of Surface Water: () Stream () River () Pond/Lake () Seep () Bomb Sampler () Pump () A ed cated yar Water Depth and Sample Equipment Used for Collection: () None, Grab into Bottle () Bomb Sampler () Pump () A ed cated yar Decontamination Fluids Used:					_	Water Quality Param () Temperature 5. () Conductivity 73 () ph 6.50 units () Dissolved oxyger () Turibidity 179	15 °C 33 μmhs/cm 3 9.32 cn 1704 mg/L		
Water Depth and Sample Location (ft) Depth of Sample from Top of Water (0) (1) Depth of Sample from (2) (3) (4) Decontamination Fluids Used: (3) (4) (5) Decontamination Fluids Used: (6) (7) (8) Decontamination Fluids Used: (7) (8) (8) Decontamination Fluids Used: (8) (9) Nore Decontamination Fluids Used: (1) Nore N						() Eh 16 mv			
Dı	ield Duplicate	te Collected		Measurement Location SI		Method U () Winkl () Probe	der		
() MS/MSD SEDIMENT INFORMATION Type of Sample Collected: () Discrete () Gravity Corer () Stainless Steel Split Spoon () Dredge Sediment Type: () Clay () Aluminum Pans () Sand () Organic () Gravel () Gravel					n	Decontamination Flu (Isopropyl Alcoho () ASTM Type II W (Deionized Water () Liquinox Solutio () Hexane () HNO, Solution () Potable Water () None	ol Water r		
Sample Observations: () Odor	اح 400	, wh				<u> </u>			
	Ouplicate ID _	: Collected			() MS/M	ISD			
SAMPLES COLLECTE	T				T	T	T		
Check if Required at this Location	Surface Water	atrix Sediment	Check if Pr with Acid		Volume Required	Check if Sample Collected	Sample Bottle IDs		
Voc TALmetals			V		Doml	1.	BN13SILTSW3		
VOCTALMETAS		V			802	V	BN1331 LT504		
1000	+				1		1		

NOTES/SKETCH				
	٠.		•	

Appendix A.5

Field Record of Landfill Gas Monitoring

FIELD RECORD OF LANDFILL GAS MONITORING

Project Name: LTMP ENGINEERING INSPECTION	Project No. 29606.47	Date: 11/24/98						
Weather/Temperature/Barometric Pressure: SUNNY, CLEAR, 40°F,								
	Equipment: GA-90							
Equipment Calibration Information:								

ID No.	Labeled/ Capped	Probe/Vent Locked	Casing/Seal Condition	Depth to Bottom (st)	Pressure (in. 14,0) HG	Percent Methane	Percent Oxygen	Percent CO ₂	Comments
i			Good		29.6	0	21.1	0	
2		·	Good		29.6	0	21.1	0	
3			Good		29.6	ار	21.3	0	
3			Geod		<i>ع٩,</i> 6	0	21.1	0	
4			Good		29.6	0	21.3	0	
5			Good		29.6	. 0	21.4	0	
6			Good		29.6	9	35.0	0	
7			600A		29.6	0	<u>aa.</u>	0	
8			Good		29.6	٥	21.5	. 0	
9			Good		29.6	ا،	a1.5	٥	
10			Good		29.7	0	21,5	0	
11			600D		29.6	. 0	21,5	0	
12			inc		29.6	0	21.5	0	
13			IND.		29.7	0	21,5	٥	
14			6000		25.7	0	21.5	0	

Page __ of __

GAS PRUBES

6000

29.7

0

8.8

1.2

4000

19.6

0

9.1

3.6

6000

29.7

0

10.5

6

Appendix B Analytical Data Quality Review

APPENDIX B - CONTENTS

		<u>Page</u>
B.1	INTRODUCTION	B-1
	B.1.1 Field Sampling Program Quality Control	
	B.1.2 Laboratory Analytical Quality Control Program	B-3
B.2	SAMPLE HOLDING TIMES	B-4
B.3	PRECISION	B-4
	B.3.1 Volatile Organic Compounds	B-4
	B.3.2 Target Analyte List Metals	
B.4	ACCURACY	B-5
	B.4.1 Volatile Organic Compounds	B-5
	B.4.2 Target Analyte List Metals	B-6
B.5	COMPLETENESS	B-7
B.6	FIELD QUALITY CONTROL BLANKS	B-7
B.7	DUPLICATE FIELD SAMPLES	
B.8	METHOD DETECTION LIMITS FOR SOLID AND AQUEOUS SAMPLES	B-18

Page B-1 March 1999

APPENDIX B

ANALYTICAL DATA QUALITY REVIEW

B.1 INTRODUCTION

This project utilized both field and analytical laboratory quality control measures to ensure that the data quality objectives presented in the project-specific Quality Assurance Project Plan (QAPP) (EA 1998) were met.

The sampling program consisted of 64 aqueous samples (of which 10 were field duplicates) (ground-water, surface water, and leachate station seep samples) collected from Sites 1 and 3 and Eastern Plume, 5 sediment samples (of which 1 was a field duplicate) collected from Sites 1 and 3, and 15 aqueous samples (of which 2 were field duplicates) collected from the direct-push sampling event. For the combined analyses for these sites, the laboratory was provided with 1 sediment and 8 aqueous sample delivery groups (SDG) which included 3 rinsate blanks, 6 trip blanks, and 1 source water blank. Field sample duplicates and source water, equipment rinsate, and trip blanks were collected at the frequency required by the QAPP.

Analytical quality control was reviewed for compliance against data quality objectives established for precision and accuracy for each sample and analysis type, including field quality control blanks (i.e., trip blank) and field sample duplication. Analytical precision was based upon the mean relative percent difference (RPD) of the matrix spike/matrix spike duplicates (MS/MSD) for organic analysis and the RPD of the laboratory duplicates for inorganic analysis. Accuracy was based upon the reported spike recoveries for the laboratory control standard (LCS), MS/MSD and system monitoring compound (SMC) recoveries (for organic analysis), and LCS and MS recoveries (for inorganic analysis).

The ability of the laboratory to extract compounds is confirmed by the recoveries of the LCS. MS/MSD and SMC recoveries measure the effect of the sample matrix on sample preparation and measurement methodology. Known quantities of target compounds are spiked into the sample matrix for the MS/MSD, and recoveries are used to measure potential bias due to matrix effects. SMC, which are structurally similar to the targeted analytes, are used to evaluate the recovery of the target compounds, which are then used as indicators for all of the analytes. The accuracy of the LCS spike recoveries is used in conjunction with the MS/MSD when evaluating organic analyses.

Analytical completeness was quantified by reviewing the number of usable results to the total number of scheduled results. Field sample completeness was quantified by reviewing the number of samples collected to the number of samples scheduled for collection.

For clarity, the following definitions are defined for use throughout Appendix B:

- Instrument Detection Limit (IDL)—Defined as the lowest concentration that can be determined to be statistically different from instrument background noise (instrument blank).
- Method Detection Limit—The minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero and is determined from analysis of a sample for a given matrix. The method detection limit for soil and aqueous media are summarized in Tables B-1 and B-2, respectively.
- Contract Required Detection Limit/Contract Required Quantitation Limit (CRDL/CRQL)—Minimum level of detection acceptable under the contract Statement of Work in order to ensure regulatory compliance. This terminology is widely accepted in the industry as defined by the U.S. Environmental Protection Agency (EPA) contract laboratory protocols and is a standard list of inorganic analyte concentrations and organic compound concentrations on which laboratory flags and data validation qualifiers are based. These published concentrations are meant to be above the laboratory IDLs in order to ensure a level of confidence. The published CRDLs/CRQLs are specific to the Contract Laboratory Program methodology but are often used throughout industry methods. The data user should be aware that stated CRDLs/CRQLs are generic for a method and are affected for each sample by sample size, concentration, percent solids, and dilution factors.
- Practical Quantitation Limit—Defined as the lowest level that can be reasonably
 achieved within specified units of precision and accuracy during routine
 laboratory operating conditions.

The following sections summarize the results of this program:

	Holding Field Blank Precision Accuracy		Complete	Completeness						
Data Quality Review		Time	Contamination	Laboratory	Field	SMC	MS/MSD	LCS	Analytical	Field
Agueous	VOC	1	✓B	1	√ J	√	√	√		
1	Metals	✓	✓B	1	√J	NA_	•	✓		
Sediment	VOC	7	✓B	1	✓J	7	1	/	100%	100%
	Metals	✓	✓B	✓	✓J	NA	√	1		<u> </u>
Direct-push	VOC	×	✓B	/	✓	1	1	✓	100%	100%
Aqueous				<u> </u>				<u> </u>		<u> </u>
NOTE: VOC		le organic co					• •.•			
В			n affected by field							
•	= The da	ita are usabl	e as reported based	d on the data qu	iality revi	ew of this	quality measure	ement.	•	
×	= Some analyte concentrations are not usable.									
NA										
✓J	= The da	ita are usabl	e, however, some	analyte concen	trations sh	ould be co	onsidered estim	ates of the	ir true concent	rations.

Page B-3 March 1999

All volatile organic compound (VOC) and metals data for Sites 1 and 3 and Eastern Plume are usable as reported based on the accuracy and precision review provided herein. All VOC data for the direct-push sampling (with the exception of one sample) are usable as reported based on the accuracy and precision review provided herein. Major and minor sample biases are identified and a detailed description of holding time issues (Section B.2), field/laboratory blank contamination (Section B.6), precision issues (Section B.3), accuracy issues (Section B.4), and analytical and field completeness (Section B.5) are provided below.

B.1.1 Field Sampling Program Quality Control

A field quality control duplicate sample was collected for each matrix (i.e., sediment and water) and analyzed for the same parameters as the environmental samples to determine field sampling precision. The potential for cross-contamination of volatile organics during sample storage and shipment was monitored by trip blanks which were shipped with each sample cooler containing aqueous samples. The trip blanks were analyzed for VOC by EPA SW-846, Method 8260B. To document the effectiveness of decontamination protocols, rinsate blank samples were taken by running de-ionized water through non-dedicated sampling equipment into the appropriate sample containers and analyzing for the same parameters as the environmental samples. In addition, a source water blank was analyzed to assess the chemical quality of the water used in the decontamination process. The source water blank was also analyzed for the same parameters as the environmental samples.

B.1.2 Laboratory Analytical Quality Control Program

Ground-water samples collected at Sites 1 and 3, the Eastern Plume, and for the direct-push event were analyzed for Target Compound List (TCL) VOC plus a library search of the first 15 tentatively identified compounds by EPA Method 8260B. Surface water and leachate station seep and sediment samples were collected at Sites 1 and 3 for analysis of TCL VOC plus a library search of the first 15 tentatively identified compounds by EPA Method 8260B and Target Analyte List (TAL) elements, including metals by inductively coupled plasma (EPA Method 6010A) and mercury by cold vapor atomic adsorption (EPA Method 7471A/7470M¹). Arsenic, selenium, thallium, and chromium were analyzed by inductively coupled plasma (EPA Method 6010) rather than graphite furnace atomic adsorption (EPA 7000 series methods) as specified in Draft LTMP (EA 1998); the precision and accuracy objectives and reporting requirements identified in the LTMP were met. The quality control measures specified in the SW-846 methodology (MS/MSD, SMC, LCS, and laboratory duplicates), as well as those in the QAPP (EA 1998), were used by the laboratory to establish proper analytical quality control.

The range of results for the data quality objective parameters is discussed for each sample matrix in the sections below.

^{1.} To use a microwave digestion versus water bath.

Page B-4 March 1999

B.2 SAMPLE HOLDING TIMES

The results for 5 direct-push samples should be considered bias low and 1 direct-push sample was rejected based on holding time criteria. Holding times (defined as from date of sample collection to date of sample preparation/analyses) were compared against the maximum holding times identified in the quality control requirements of the referenced analytical methods. The holding times were met for all methods and sample matrixes with the exception of volatile organic analyses for the direct-push event. The following table summarizes the affected samples:

Sample	Method Holding Time for VOC	Exceedance of Acceptance Criteria			
DP-EP-05, 22-26 ft DL	14 days	14 days			
Equipment Rinsate RE	14 days	14 days			
Equipment Rinsate DL	14 days	26 days			
DP-EP-07, 38-42 ft DL	14 days	14 days			
DP-EP-06, 39-43 ft DL	14 days	13 days			
DP-EP-02, 33-37 ft RE	14 days	1 day			
DP-EP-03, 78-82 ft RE	14 days	2 days			
NOTE: DL = This suffix	indicates sample rea	nalysis at a dilution.			
	indicates sample rea				
matrix interference.					
VOC = Volatile or	ganic compounds.				

The usability of the volatile organic data for the following: diluted samples DP-EP-05 (22-26 ft), DP-EP-07 (38-42 ft), and DP-EP-06 (39-43 ft); reanalyzed samples equipment rinsate; DP-EP-002 (33-37 ft), and DP-EP-03 (78-82 ft) are unaffected, in that the holding time did not exceed 14 days. However, the reported volatile organic concentrations should be considered estimations of the true sample concentration for the above listed samples. The analytical results for these samples may be bias slightly low.

The usability of the volatile organic data for diluted Equipment Rinsate is unusable due the gross exceedance of the 14-day holding time requirement. The analytical results for this sample should not be used, instead the analytical results from the initial analysis should be used.

B.3 PRECISION

B.3.1 Volatile Organic Compounds

The surface water, monitoring wells, combined effluent, seep sediments, and direct-push sample results are usable as reported based on precision criteria. Five VOC were used to qualify the MS/MSD RPD. The control limits identified in the QAPP were used to evaluate the data. MS/MSD sets were performed on Samples MW-2101 and SW-09 from Sites 1 and 3; MW-305, MW-318, SW-12, and Combined Effluent from Eastern Plume; sediment seep Sample LT-01 from Sites 1 and 3; and DP-EP-05 (22-26 ft) and DP-EP-01 (39-43 ft) from the direct-push event.

The surface water, monitoring wells, and combined effluent sample MS/MSD RPDs (from Sites 1 and 3 and Eastern Plume) met acceptance criteria, therefore, the analytical precision was determined to be acceptable and the aqueous VOC data usable as reported based on the review of laboratory precision. All laboratory prepared spikes (performed in both method blanks and LCS) had acceptable RPDs.

The ground-water sample MS/MSD RPDs (from the direct-push event) were within the acceptance criteria with the exception of 1,1-dichloroethene (89 percent) in Sample DP-EP-05 (22-26 ft). The RPD for 1,1-dichloroethene in the sample mentioned above did not indicate significant imprecision, therefore, the data are usable as reported. The analytical precision was determined to be acceptable and the aqueous VOC data usable as reported based on the review of laboratory precision.

The solid seep sample MS/MSD RPDs from Sites 1 and 3 met acceptance criteria, therefore, the analytical precision was determined to be acceptable and the sediment VOC data usable as reported based on the review of laboratory precision.

B.3.2 Target Analyte List Metals

Though the analytical sequence and quality control requirements were met by the laboratory, however, laboratory duplicates were not performed on either of the matrices, therefore, analytical precision for these matrices could not be evaluated by the data Reviewer.

B.4 ACCURACY

B.4.1 Volatile Organic Compounds

The surface water, monitoring well, combined effluent, and seep sediment results are usable as reported. Two compounds in 1 direct-push sample should be considered bias low. The other analytical results for the direct-push samples are usable as reported. Three SMCs are normally used to measure the ability of the laboratory to purge the target analytes from the environmental samples, however, the laboratory reported an additional SMC. The SMC control limits for the aqueous and sediment samples identified in the QAPP and reported by the laboratory were identical for the first three SMC. The fourth SMC, dibromofluoromethane, was not listed in the QAPP; therefore, laboratory limits were used to evaluate the data.

The aqueous and sediment SMC recoveries were within the QAPP control limits, therefore, the volatile organic analyte results are usable as reported for both Sites 1 and 3 and Eastern Plume, based on the review of SMC accuracy.

The aqueous direct-push SMC recoveries were within the QAPP control limits, with the exception of dibromofluoromethane in the diluted Equipment Rinsate sample (85 percent); 1,2-dichloroethane-d4 in the diluted Equipment Rinsate sample (71 percent); toluene-d8 in both the reanalysis and diluted Equipment Rinsate sample (86 and 83 percent, respectively); and

Page B-6 March 1999

bromofluorobenzene in Samples DP-EP-02 (11-15 ft, 125 percent), DP-EP-03 (78-82 ft, 117 percent), and the reanalysis of DP-EP-03 (78-82 ft, 118 percent). The laboratory appropriately repeated the analysis results for these samples. The re-analysis results indicated similar results for the SMC. The re-analysis and the original analysis results for the above mentioned samples should be considered most usable and, therefore, the data are included in the summary tables. The data user should be aware that the low recoveries of this SMC indicate a possible low analytical bias due to sample matrix, and the sample data should still be considered usable

Five VOC were used to quantify the MS/MSD recoveries against QAPP control limits. The recovery limits identified in the QAPP were different than those reported by the laboratory. The data Reviewer used the QAPP limits to evaluate the data. The laboratory performed MS/MSD spikes on Samples MW-2101 and SW-09 from Sites 1 and 3; MW-305, MW-318, SW-12 and Combined Effluent from Eastern Plume; sediment seep Sample LT-01 from Sites 1 and 3; and DP-EP-05 (22-26 ft) and DP-EP-01 (39-43 ft) from the direct-push event.

The aqueous and sediment MS/MSD recoveries for Sites 1 and 3 and Eastern Plume were within the established control limits, therefore, all data are usable as reported based on the review of MS/MSD accuracy. The aqueous MS/MSD recoveries for the direct-push samples were within the established control limits with the exception of Sample DP-EP-05 (22-26 ft). The MS/MSD for Sample DP-EP-05 (22-26 ft) exhibited a low recovery for 1,1-dichloroethene (16 and 41 percent) and trichloroethene (33 and 36 percent). The data user should be aware that the positive results for trichloroethene and 1,1-dichloroethene in Sample DP-EP-05 (22-26 ft) should be considered bias low.

Five VOC are used to quantify LCS recoveries against laboratory established control limits. No LCS recovery limits are stated in the QAPP. The LCS recovery limits used are provided in Appendix C. The aqueous and sediment LCS recoveries are within laboratory established control limits, confirming the laboratory's purging efficiency for both aqueous and solid matrices. Therefore, the aqueous and sediment VOC data are usable as reported based on the review of LCS accuracy.

B.4.2 Target Analyte List Metals

All metals are usable as reported based on accuracy criteria. Nineteen TAL analytes were used to quantify MS recoveries for aqueous and sediment samples. Calcium, magnesium, potassium, and sodium were not required as spiking compounds due to the potential for these compounds to be present in the environmental samples at high concentrations. The MS samples were analyzed at the correct frequency, and the accuracy control limits used to evaluate the data were taken from the QAPP.

The laboratory performed an MS on 3 aqueous samples (Eastern Plume Combined Effluent, MW-2101, and SW-01). The MS recoveries were within the established control limits of 75-125 percent, therefore, all data are usable as reported based on the review of MS/MSD accuracy.

March 1999

The laboratory performed an MS on solid seep sample LT-01. The MS recoveries for sample LT-01 were within the established control limits, therefore, all data are usable as reported based on the review of MS/MSD accuracy.

All 23 TAL analytes were used to quantify the LCS recoveries against laboratory established control limits. No LCS recovery limits were stated in the QAPP. The aqueous LCS recoveries for Sites 1 and 3, Eastern Plume, and the direct-push samples were within laboratory established control limits, confirming the laboratory's ability to perform sample digestion/distillation. The aqueous and sediment results should be considered usable based on the review of the LCS accuracy.

B.5 COMPLETENESS

Field sampling completeness was quantified by comparing the number of samples analyzed to the number of samples scheduled for collection. At Sites 1 and 3, 26 of 26 samples were collected for a field completeness of 100 percent. At Eastern Plume, 33 of 33 samples were collected for a field completeness of 100 percent. During the direct-push event, 15 of 15 samples were collected for a field completeness of 100 percent.

The field quality control blanks (e.g., trip blanks) were collected at the proper frequency. A total of 4 trip blanks were collected for Sites 1 and 3 and Eastern Plume and 2 trip blanks were collected for the direct-push event. There were 3 rinsate blanks (associated with Sites 1 and 3 and Eastern Plume) and one rinsate blank collected for the direct-push event. The rinsate blanks collected for Sites 1 and 3 included 1 rinsate blank associated with the sediment samples and 1 was associated with the surface water/seep samples. One rinsate blank was collected for the Eastern Plume in association with the surface water samples. One rinsate blank was collected for the direct-push event. The 3 rinsate samples and 1 source water blank for Sites 1 and 3 and Eastern Plume were submitted in compliance with the QAPP. The 1 rinsate sample for the direct-push event was submitted in compliance with the work plan.

Analytical completeness was quantitated by reviewing the number of acceptable analytical results to the total number of analytical results. Usable analytical data for Sites 1 and 3 and Eastern Plume were available for all analytes/compounds, therefore, there is a total analytical completeness of 100 percent. Usable analytical data for the direct-push event were available for all analytes/compounds, therefore, there is a total analytical completeness of 100 percent.

B.6 FIELD QUALITY CONTROL BLANKS

Monitoring well, surface water, seep, field blank, and direct-push samples contain results that are false-positive based on both field and method blank criteria. Field quality control blanks (rinsate blanks) were evaluated for contamination that may have been introduced during field sampling activities. Trip blanks are indicators for contamination of VOC during sample shipment. In cases where contamination exists, environmental samples should be reviewed for possible false-

Page B-8 March 1999

positives. The field quality control blanks collected for Sites 1 and 3 and Eastern Plume included 4 trip blanks, 3 rinsate blanks, and 1 source water blank. The field quality control blanks collected for the direct-push operation include 2 trip blanks and 1 rinsate blank.

Trip blanks associated with Sites 1 and 3 and Eastern Plume were analyzed for VOC. The results of the 4 trip blanks are shown in the following table:

Compounds	Units	QT-001	QT-002	QT-003	QT-004		
Carbon Disulfide	μg/L	(<1U)	0.5J	(<1U)	(<1U)		
Total Xylenes	μ g/ L	(<1U)	1	(<1U)	(<1U)		
Tetrachloroethene	μ g/ L	(<1U)	1.	(<1U)	(<1U)		
Trichloroethene	μ g/ $ m L$	(<1U)	2B	1 B	(<1U)		
Ethylbenzene	μ g/L	(<1U)	0.6J	(<1U)	(<1U)		
Acetone	μ g/ $ m L$	(<5U)	4J	3J	(<5U)		
1,2-Dichlorobenzene	μ g/L	(<1U)	2	(<1U)	(<1U)		
1,3-Dichlorobenzene	μ g/ L	(<1U)	0.9J	(<1U)	(<1U)		
1,4-Dichlorobenzene	μ g/ $ m L$	(<1U)	1	(<1U)	(<1U)		
Methylene Chloride	μg/L	(<1U)	0.9JB	3B_	(<1U)		
NOTE: U = Not detected. Sample quantitation limits are shown as (<u).< td=""></u).<>							
J = Estimated concentration below detection limit.							
B = Compou	nd detected	in associat	ed method	blank.			

The positive carbon disulfide result in Sample SW-14 should be considered false-positive. The carbon disulfide concentration in LT-5 was high enough not to be affected by the associated trip blank contamination. Carbon disulfide was not detected in any other aqueous environmental samples, therefore, all non-detected carbon disulfide data are unaffected.

The positive results for total xylenes in 3 samples (SW-04, SW-12, and SW-14) should be considered false-positives. Total xylenes were not detected in any other aqueous environmental samples, therefore, all non-detected total xylenes data are unaffected.

The positive results for tetrachloroethene in 2 samples (SW-12 and SW-14) should be considered false-positives. Tetrachloroethane was also detected in Sample LT-3, however, the contamination did not affect the usability of the tetrachloroethene due to the elevated sample concentration. All non-detected tetrachloroethene data are unaffected.

The positive results for ethylbenzene in 2 samples (SW-12 and SW-14) should be considered false-positives. Ethylbenzene were not detected in any other aqueous environmental samples, therefore, all non-detected total ethylbenzene data are unaffected.

The positive 1,2-dichlorobenzene results in 3 samples (SW-14, SEEP-04, and SEEP-05) should be considered false-positives, 1,2-dichlorobenzene was also detected in Samples LT-3 and LT-5, however, the contamination did not affect the usability of 1,2-dichlorobenzene due to the elevated sample concentration. All non-detected 1,2-dichlorobenzene data are unaffected.

Page B-9 March 1999

The positive 1,3-dichlorobenzene results in Sample SW-14 should be considered false-positives; 1,3-dichlorobenzene was also detected in Sample LT-3, however, the contamination did not affect the usability of 1,3-dichlorobenzene due to the elevated sample concentration. All non-detected 1,3-dichlorobenzene data are unaffected.

The positive 1,4-dichlorobenzene results in 3 samples (SW-14, SEEP-04, and SEEP-05) should be considered false-positives; 1,4-dichlorobenzene was also detected in 4 samples (LT-1, LT-3, LT-4, and LT-5), however, the contamination did not affect the usability of 1,4-dichlorobenzene due to the elevated sample concentration. All non-detected 1,4-dichlorobenzene data are unaffected.

The positive acetone results in 4 samples (SW-04, SW-08, MW-NASB-212, and MW-303) should be considered false-positives. The acetone concentrations in 5 samples (LT-1, LT-1 DUP, LT-3, LT-4, and LT-5) were high enough not to be affected by the associated trip blank contamination. The positive acetone results in 5 samples (QT-002, QT-003, QS-001, SEEP-04, and SEEP-05) should be considered false-positive do to method blank contamination.

The positive results for trichloroethene in 5 samples (MW-303, MW-308, MW-313, MW-225A, and SEEP-03) should be considered false-positives. The trichloroethene concentrations in 6 samples (LT-3, MW-311, MW-331 DUP, MW-205, MW-207A, and MW-229A) were high enough not to be affected by the associated trip blank contamination. All non-detected trichloroethene data are unaffected. The positive trichloroethene results in 14 samples (QT-002, QT-003, SW-04, SW-08, SW-09, SW-10, SW-11, SW-12, SW-13, SW-13 DUP, SW-14, QS-003, MW-NASB-212, and MW-319) should be considered false-positives due to method blank contamination. The data quality review confirmed that the contamination reported in the method blanks was due to low level carryover from the analytical laboratory.

The positive methylene chloride results in 27 samples (QT-002, QT-003, QS-003, QS-001, QD-001, SW-04, SW-08, SW-08 DUP, SW-09, SW-10, SW-14, MW-205, MW-224, MW-303, MW-305, MW-306, MW-311, MW-311 DUP, MW-319, MW-331, MW-332, MW-332 DUP, MW-1104, MW-1104 DUP, MW-NASB-212, P-106, and P-132) should be considered false-positives due to method blank contamination. The data quality review confirmed that the contamination reported in the method blanks was due to low level carryover from the analytical laboratory. The methylene chloride concentrations in 5 samples (LT-1, LT-1 DUP, LT-3, LT-4, and LT-5) were high enough not to be affected by the associated trip blank and method blank contaminations.

The equipment rinsate blanks associated with sediment and surface water samples collected at Sites 1 and 3 and Eastern Plume were analyzed for VOC and TAL metals. The positive results of the 3 rinsate blanks (QS-001 [dedicated jar rinsate], QS-002 [equipment rinsate], and QS-003 [dedicated jar rinsate]) and the associated source water blank (QD-001) associated with Sites 1 and 3 and Eastern Plume are shown in the table below:

Compounds/Analytes	Units	QS-001	QS-002	QS-003	QD-001	
Acetone	μg/L	3ЈВ	(<5U)	(<5U)	(<5U)	
Methylene Chloride	μ g/ L	4B	4B	4B	5B	
Chloroform	μ g/ $f L$	13	12	11	14	
Trichloroethane	μ g/ L	(<1U)	(<1U)	4B	(<1U)	
Barium	μ g/ $ m L$	0.40B*	1.9B*	NR	1.0 B *	
Calcium	μ g/ L	(<11.89U)	19.6B*	NR	27.3B*	
Chromium	μ g/ $ m L$	(<0.63U)	0.80B*	NR	0.68B*	
Iron	μ g/L	29.8B*	40.7B*	NR	47.1B*	
Lead	μ g/ L	3.0B*	3.0B*	NR	2.7	
Manganese	μ g/ $ m L$	0.37B*	0.44B*	NR	0.61B*	
Mercury	μ g/L	0.04B*	0.04B*	NR	(<0.01U)	
Sodium	μ g/ $ m L$	209	166	NR	202	
Vanadium	μ g/ $ m L$	(<0.46U)	0.50B*	NR	(<0.46U)	
Zinc	μg/L	3.3B*	2.3B*	NR	3.2B*	
NOTE: J = Estima	ted conce	entration belov	w detection li	mit.		
B = Compo	ound dete	cted in associ	ated method l	olank.		
U = Not detected. Sample quantitation limits are shown as (<u).< td=""></u).<>						
$B^* = Analyt$	e concen	tration is betw	een the IDL	and the CRD	L.	
NR = Analys	is not rec	quired.				

The analytical results of the equipment rinsate blanks and source water blank indicate that there was minor VOC contamination present. See prior trip blank discussion for actions taken for acetone, methylene chloride, and trichloroethane contamination. The appearance of chloroform in the source water blank indicates that chloroform was a contaminant of the rinse water and not a result of poor decontamination procedures. Chloroform was not detected in any of the environmental samples and, therefore, the usability of the chloroform data were unaffected.

Analytes barium, calcium, iron, manganese, and vanadium in the samples far exceed the associated source water blank and rinsate blank contamination, therefore, samples were unaffected by barium, calcium, iron, manganese, and vanadium contamination.

Chromium was identified in both the rinsate blanks and the source water blank. The appearance of chromium in the associated source water blank indicates that this analyte is a contaminant of the rinse water and not a constituent left by poor decontamination procedures. Five samples (SW-04, SW-07, SW-08, SW-08 DUP, and SW-09) had positive concentrations of chromium within the expected range of variability of the rinsate blank contamination and should, therefore, be considered as false-positives due to rinsate blank contamination.

Lead was identified in both the rinsate blanks and the source water blank. The appearance of lead in the associated source water blank indicates that this analyte is a contaminant of the rinse water and not a constituent left by poor decontamination procedures. Seven samples (SW-09, SW-04, SW-07, SW-08, SW-08 DUP, LT-4, and LT-5) had positive concentrations of lead within the expected range of variability of the rinsate blank contamination and should, therefore, be considered as false-positives due to rinsate blank contamination.

Page B-11 March 1999

Mercury was identified in both the rinsate blanks and the source water blank. The appearance of mercury in the associated source water blank indicates that this analyte is a contaminant of the rinse water and not a constituent left by poor decontamination procedures. Eight samples (SW-09, SW-04, SW-07, SW-08, SW-08 DUP, LT-1, LT-4, and LT-5) had positive concentrations of mercury within the expected range of variability of the rinsate blank contamination and should, therefore, be considered as false-positives due to rinsate blank contamination.

Sodium was identified in both the rinsate blanks and the source water blank. The appearance of sodium in the associated source water blank indicates that this analyte is a contaminant of the rinse water and not a constituent left by poor decontamination procedures. Five samples (LT-1, LT-1 DUP, LT-3, LT-4, and LT-5) had positive concentrations of sodium within the expected range of variability of the rinsate blank contamination and should, therefore, be considered as false-positives due to rinsate blank contamination.

Zinc was identified in both the rinsate blanks and the source water blank. The appearance of zinc in the associated source water blank indicates that this analyte is a contaminant of the rinse water and not a constituent left by poor decontamination procedures. Five samples (SW-09, SW-04, SW-07, SW-08, and SW-08 DUP) had positive concentrations of zinc within the expected range of variability of the rinsate blank contamination and should, therefore, be considered as false-positives due to rinsate blank contamination.

Trip blanks and equipment blank associated with the direct-push operation were analyzed for VOC. The results of the 2 trip blanks and equipment blank are shown in the following table:

Compounds	Units QT-1		QT-2	Equipment Rinsate			
Acetone	μg/L	3J	(<5U)	11			
1,1,1-Trichloroethane	μg/L	(<1U)	(<1U)	1			
NOTE: J = Estim	NOTE: J = Estimated concentration below detection limit.						
U = Not detected. Sample quantitation limits are shown as (<u).< td=""></u).<>							

The analytical results of the trip blanks and equipment rinsate blank indicate that there was minor VOC contamination present. The usability of acetone data in the aqueous direct-push samples was unaffected as acetone was not detected in any of the samples: 1,1,1-trichloroethane was identified in the equipment blank, and sample DP-EP-01 (39-43 ft) had a positive concentration of 1,1,1-trichloroethane within the excepted range of variability of the rinsate blank contamination and should, therefore, be considered a false-positive result due to rinsate blank contamination. The compound 1,1,1-trichloroethane in 3 samples (DP-EP-05 [22-26 ft], DP-EP-06 [39-43 ft], and DP-EP-07 [38-42 ft]) far exceeded the associated rinsate blank contamination, therefore, samples were unaffected by 1,1,1-trichloroethane contamination.

B.7 DUPLICATE FIELD SAMPLES

Results for some analytes and compounds in the field duplicates for monitoring well, aqueous seep, and leachate sediment samples are estimated due to field duplicate criteria. Field duplicate samples are used to evaluate the overall precision for both the field and laboratory, and the

Page B-12 March 1999

homogeneity of the sample matrix. Typically, these results have more variability than laboratory precision measurements with the extremes being noted in soil matrices. Based on EPA Region I criteria for evaluating field duplicates, the following guidelines were used to review the field duplicates taken during the sampling event. The overall precision of organic compounds was evaluated as the RPD (non-detects were defined as one-half the reporting limit) and considered acceptable at an RPD of less than 30 percent for water samples and 50 percent for soil samples. Overall precision for inorganic analytes was evaluated by reviewing the difference of the field duplicate for analytes with concentrations less than 5 times the reporting limit (the difference cannot be greater than ±2X the reporting limit for water samples or cannot be greater than ±4X reporting limit for soil samples), and by the RPD (less than 30 percent for water samples and 50 percent for soil samples) for the analytes greater than 5 times the reporting limit. Non-detects were defined as one-half the reporting limit for difference measurements. The reporting limits used to evaluate the data are based on those presented in the QAPP.

The sample locations of the field duplicated samples were not identified to the laboratory. A total of 10 samples were duplicated for Sites 1 and 3 and Eastern Plume (collected during the ground-water, surface water, sediment, seep, and treatment plant sampling programs). Each SDG had the appropriate number of duplicate field samples collected. The RPD results from the 5 field duplicate ground-water samples, 2 field duplicate surface water sample, 1 field duplicate leachate station seep sample, 1 field duplicate leachate station sediment sample, and 1 field duplicate effluent sample are shown in the tables below.

The following table shows the field duplicate results from the surface water samples associated with SDG S1SW001:

Compounds/Analytes	Units	SW-08	SW-08 DUP	RPD%	Difference		
Trichloroethene	μg/L	0.78B	(<1U)	44			
Acetone	μg/L	3J	(<5U)	18 .			
Methylene Chloride	μ g/ L	6B	7B	- 15			
Aluminum	μ g/ $f L$	220	230	NA	10		
Barium	μ g/L	22.1	21.8	NA	0.3		
Calcium	μ g/ $ m L$	8,090	7,920	2	NR		
Chromium	μ g/ $f L$	1.2B*	0.99B*	NA	0.21		
Iron	μġ/L	1,540	1,460	5	NR		
Lead	μ g/ L	4.0B*	4.0B*	NA	0		
Magnesium	· μg/L	1,800	1,760	2	NR		
Manganese	μ g/L	251	244	3	NR		
Mercury	μ g/ $ m L$	0.03B*	0.05B*	NA	0.02		
Nickel	μ g/L	1.1B*	(<0.77U)	NA	0.7		
Potassium	μ g/L	1,620	1,770	NA	150		
Sodium	μ g/ $f L$	11,600	11,500	1	NR		
Vanadium	μ g/ $ m L$	1.5B*	1.2B*	NA	0.3		
Zinc	μg/L	11.9B*	6.8B*	NA	5.1		
	•		ted method blank.				
			tion limits are shov	vn as (<u)< td=""><td>).</td></u)<>).		
	timated concer	tration below	detection limit.				
	•		en the IDL and the				
			tration was less tha				
NR = Not required; analyte concentration was greater than 5X the reporting lim							
and, therefore, the RPD was applied.							
			f the precision requ		1		
Dashes ()	indicate this co	olumn does no	t apply to organic	analysis.			
•	<u>-</u>						

March 1999

The data user should note that the results for methylene chloride and trichloroethene should be considered false-positive due to method blank contamination and, therefore, the precision criteria would not apply. All precision requirements were met for the (see Section B.6 for discussion) field duplicate analyses; the results are usable as reported.

The following table shows the field duplicate results from the surface water samples associated with SDG EPQS003:

Compound/Analyte	Units SW-13		SW-13 DUP	RPD%			
Trichloroethene	μg/L	2B	2B	0			
NOTE: B = Compound detected in associated method blank.							

The data user should note that the results for trichloroethene should be considered false-positive due to method blank contamination and, therefore, the precision criteria would not apply. All precision requirements were met for the field duplicate analyses (see Section B.6 for discussion); the results are usable as reported.

The following tables show the field duplicate sample results associated with the monitoring well samples at Sites 1 and 3.

The following table shows the field duplicate sample results associated with SDG S1MW001:

Compounds/Analytes	Units	MW-219	MW-219 DUP	RPD%	Difference	
Aluminum	μg/L	611	1,040	52	NR	
Barium	μ g/L	6.8	8.5	NA	1.7	
Calcium μ g/L 11,600 11,200 3.5 NR						
Chromium	μ g/L	12.8B*	15.0	NA	2.2	
Cobalt	μ g/L	(<2.74U)	2.8	NA	1.4	
Copper	μ g/L	(<1.4U)	3.5	NA	2.8	
Iron	μ g/L	1,420	2,100	39	NR	
Lead	μ g/L	(<1.31U)	2.0B*	NA	1.3	
Magnesium	μ g/L	4,100	4,110	0.2	NR	
Manganese	μ g/L	19.3	30.1	NA	10.8	
Mercury $\mu g/L = 0.07B^* = 0.07B^* = NA = 0$					0	
Nickel	·					
Potassium	μ g/L 1,380 1,480 NA 100					
Sodium	μ g/ ${f L}$	7,730	7,340	5	NR	
Vanadium	μ g/L	(<3.24U)	4.7B*	NA	3.1	
Zinc	μ g/L	5.6	7.4B*	NA	1.8	
NOTE: NR = Not	required	; analyte con	centration was gre	ater than 5	X the	
	eporting limit and, therefore, the RPD was applied.					
	Analyte concentration is between the IDL and the CRDL.					
1	ot applicable; analyte concentration was less than 5X the					
	eporting limit.					
			antitation limits ar			
Results in bo	ld indicat	e an exceeda	nce of the precisio	n requirem	ents.	

All precision requirements were met for the field duplicate analyses with the exception of aluminum, iron, and manganese. The results for aluminum, iron, and manganese should be considered estimations of their true concentrations in Sample MW-219 due to the lack of precision between field sample duplicates.

The following table shows the organic and inorganic field duplicate sample results associated with the aqueous seep samples in SDG S1SW001:

Compounds/Analytes	Units	SEEP-1	SEEP-1 DUP	RPD%	Difference			
1,1-Dichloroethane	μg/L	1	1	0				
1,1,2,2-Tetrachloroethane	μ g/L	4	4	0				
1,1,1-Trichloroethane	μ g/ $ m L$	5	6	18				
Aluminum	μ g/ L	14,000	7,220	64	NR			
Arsenic	μg/L	49.5	29	NA	20.5			
Barium	μ g/ L	988	950	9	NR			
Beryllium	μ g/ $ m L$	7.0	4.4B*	NA	2.6			
Cadmium	μ g/L	3.9B*	3.0B*	NA	0.9			
Calcium	μ g/ $ m L$	186,000	161,000	14	NR			
Chromium	μ g/ L	24.7	13.7B*	NA	11			
Cobalt	μ g/L	224	129	NA	95			
Copper	μ g/L	45.6	30.4	NA	15.2			
Iron	μ g/L	376,000	19,700	180	NR			
Lead	μ g/L	99.7	61.0	48	NR			
Magnesium	μ g/ $ m L$	15,500	13,100	17	NR			
Manganese	μ g/L	3,600	1,870	63	NR			
Mercury	μ g/ $ m L$	1.7	1.1	42	NR			
Nickel	μ g/L	169	122	NA	47			
Potassium	μ g/L	4,370	3,670	NA	700			
Selenium	μ g/L	15.3	7.9B*	NA	7.4			
Silver	μ g/L	1.9B*	3.8B*	NA	1.9			
Sodium	μ g/ $ m L$	15,000	14,200	5	NR			
Vanadium	μ g/L	105	67.6	NA	37.4			
Zinc	μ g/ $ m L$	237	177	NA	_ 60			
NOTE: NR = Not requ	ired; anal	yte concentrat	tion was greater th	han 5X the	CRDL and,			
therefore	e, the RPD	was applied.						
			ration was less tha		CRDL.			
B* = Analyte concentration is between the IDL and the CRDL.								
Dashes () indicate this column does not apply to organic analysis.								
Results in bold inc	dicate an e	xceedance of	the precision req	uirements.				

All precision requirements were met for the field duplicate analyses with the following exceptions: aluminum, cobalt, iron, lead, manganese, mercury, and zinc. The concentrations of these compounds (aluminum, cobalt, iron, lead, manganese, mercury, and zinc) should be considered estimations of the true concentrations in Sample SEEP-1 based on the exceedance of precision criteria for field duplicates. All other analyte results in Sample SEEP-1 should be considered to be usable based on the data Reviewer's review of the field duplicates. The lack of precision for this matrix may be indicative of sampling a low flow source.

March 1999

The following table shows the results of the leachate station sediment sample field duplicate associated with S1LTSD1:

Compounds/Analytes	Units	LT-01	LT-01 DUP	RPD%	Difference				
Methylene Chloride	mg/kg	150	160	6	·				
1,1-Dichloroethane	mg/kg	57	39	38					
1,4-Dichlorobenzene	mg/kg	17	(<6U)	140					
1,1,2,2-Tetrachloroethane	mg/kg	(<6U)	57	180					
Acetone	mg/kg	3,300D	160	198	1				
1,1,2-Trichloroethane	mg/kg	(<6U)	18	143					
2-Butanone	mg/kg	120	(<32U)	153					
Aluminum	mg/kg	909	3,510	118	NR				
Arsenic	mg/kg	14.2	12.3	NA	1.9				
Barium	mg/kg	166	106	44	NR				
Beryllium	mg/kg	1.1B*	1.4B*	NA	0.3				
Cadmium	mg/kg	(<0.78U)	3.6B*	NA	3.21				
Calcium	mg/kg	10,800	13,500	22	NR				
Chromium	mg/kg	4.3B*	7.9B*	NA	3.6				
Cobalt	mg/kg	86.8	170	NA	83.2				
Copper	mg/kg	0.64B*	12.1B*	NA	11.5				
Iron	mg/kg	483,000	102,000	130	NR				
Lead	mg/kg	(<0.82U)	23.2	NA	22.8				
Magnesium	mg/kg	687	1,390	68	NR _.				
Manganese	mg/kg	3,610	4,320	18	NR				
Mercury	mg/kg	0.17	0.56	NA	0.39				
Nickel	mg/kg	46.3	56.9	NA	10.6				
Potassium	mg/kg	561B*	900	NA	339				
Selenium	mg/kg	37.8	5.4B*	NA	32.4				
Silver	mg/kg	1.2B*	4.4B*	NA	3.2				
Sodium	mg/kg	161	192	NA	31				
Thallium	mg/kg	20.8	(<2.08U)	NA	19.8				
Vanadium	mg/kg	5.2B*	22.0	NA	16.8				
Zinc	mg/kg	102	52.8	NA	49.2				
NOTE: U = Not detect	ted. Samp	ole quantitati	on limits are sho	wn as (<	_U).				
D = This flag i	ndiactor :	n analysis s	a secondary dil	ution facts					
			ion was greater						
		e concentrat was applied	•	man JA Ult	CRDL and,				
			 n the IDL and th	e CRDL.					
					CRDL.				
	NA = Not applicable; analyte concentration was less than 5X the CRDL. Results in bold indicate an exceedance of the precision requirements.								
Dashes () indicat									
L			111-70						

The field duplicate precision requirements were met for all analytes with the following exceptions: 1,4-dichlorobenzene, 1,1,2,2-tetrachloroethane, acetone, 1,1,2-trichloroethane, 2-botanone, aluminum, iron, and magnesium. The results for acetone, aluminum, iron, and magnesium should be considered estimations of the true concentration in Sample LT-1 due to the lack of precision between field sample duplicates. The exceedance of the RPD criteria for 1,4-dichloroethane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, and 2-butanone should not be considered to be significant as the concentrations are at or near the IDL where analytical error is expected. All other analytes are usable as reported based on the data Reviewer's review of the precision of the field duplicate. The lack of precision for this matrix may be indicative of sampling a sediment with high moisture content due to a low flow source which penetrates the

Page B-16 March 1999

soil. All leachate samples most likely imitate the type of precision indicated by the field duplicate for LT-1 and should be considered rough estimates of the actual given concentrations of analytes at any one given time.

The following table shows the field duplicate sample results associated with the Eastern Plume monitoring well samples.

The first set of field duplicate sample results from the samples associated with SDG EPMW001 (MW-230A and MW-230A DUP) had no detected analytes (analyzed for volatile organic analytes only as per the scope of work) for organics and, therefore, met all precision requirements. The analytical results for MW-230A are usable as reported based on review of the field duplicate precision.

The following table shows the second set of field duplicate sample results associated with the samples from SDG EPMW001:

Compounds	Units	MW-311	MW-311 DUP	RPD%
1,1,1-Trichloroethane	μg/L	3,000D	3,400D	. 0
Total 1,2-Dichloroethene	μ g/ $ m L$	11	11	0
Methylene Chloride	μ g/L	3B	3B	14
Trichloroethene	μg/L	780D	900D	5
Tetrachloroethene	μ g/ L	20	19	17
1,1-Dichloroethene	μ g/ $f L$	380D	450D	4
1,1-Dichloroethane	μ g/ $ m L$	70	73	0
1,1,2-Trichloroethane	μ g/ $f L$	4	4	0
Chloroform	μ g/ $ m L$	2	2	0
Benzene	μ g/ $oldsymbol{L}$	2	2	0
1,2-Dichloroethane	μ g/ L	9	9	0
NOTE: D = This flag indic	ates an ana	lysis at a second	lary dilution factor.	

All precision requirements were met for the field duplicate analyses; the results are usable as reported.

The following table shows the first set of field duplicate sample results from the samples associated with SDG EPMW016:

Compounds	Units	MW-1104	MW-1104 DUP	RPD%			
1,1,1-Trichloroethane	μg/L	1	2	67			
Methylene Chloride	μ g/ L	2B .	2B	0			
Total xylenes	μg/L	0.9J	7	154			
Ethylbenzene	μ g/L	(<1U)	(<1U) 1				
NOTE: B = Compound de	tected in ass	ociated method	blank.				
J = Estimated con	centration be	elow detection l	limit.				
U = Not detected. Sample quantitation limits are shown as (<_U).							
Results in bold indicate	e an exceeda	ance of the prec	ision requirements.				

Page B-17 March 1999

The exceedance of the RPD criteria for 1,1,1-trichloroethane, total xylenes, and ethylbenzene should not be considered to be significant as the concentrations are at or near the IDL where analytical error is expected. The data user should note that the results for methylene chloride should be considered false-positive due to method blank contamination and, therefore, the precision criteria would not apply. All other analytical results are usable (see Section B.6 for discussion) as reported for Sample MW-1104 based on review of the field duplicate data.

The following table shows the second set of field duplicate sample results from the samples associated with SDG EPMW016:

Compounds	Units	MW-332	MW-332 DUP	RPD%					
1,1,1-Trichloroethane	μg/L	92	96	4					
Methylene Chloride	μ g/L	0.6JB	0.8JB	29					
Trichloroethene µg/L		25	26	4					
1,1-Dichloroethene	μ g/ $ m L$	8	8	0					
1,1-Dichloroethane	μg/L	1	0.9J	11					
NOTE: J = Estimated concentration below detection limit.									
B = Compou	ind detecte	d in associate	d method blank.						

All precision requirements were met for the field duplicate analyses; the results are usable as reported. The data user should note that the results for methylene chloride should be considered false-positive due to method blank contamination (see Section B.6 for discussion) and, therefore, the precision criteria would not apply.

The following table shows the field duplicate sample results associated with the treatment plant samples from SDG EPRI001:

Compounds	pounds Units Combine Effluent		Combine Effluent DUP	RPD%
1,1-Dichloroethane	μg/L	3	2	40
1,1-Dichloroethene	μ g/ ${ m L}$	0.6J	(<1U)	91
1,1,1-Trichloroethane	μ g/ L	300D	340D	13
Trichloroethane μg/L		2B	(<1U)	120
Methylene Chloride μg/L		1 B	0.9 JB	11
Acetone	μg/L	4J	(<5U)	46
U = Not o D = This B = Com	letected. S flag indica pound dete		nits are shown as (<u). blank.<="" dilution="" factor.="" hod="" ondary="" td=""><td></td></u).>	

All precision requirements were met for the field duplicate analyses with the exception of 1,1-dichloroethane, 1,1-dichloroethene, trichlorethane, and acetone. The exceedance of the RPD criteria for 1,1-dichloroethane, 1,1-dichloroethene, and acetone should not be considered to be significant as the concentrations are at or near the IDL where analytical error is expected. The data user should note that the results for methylene chloride and trichloroethane should be considered false-positive due to method blank contamination (see Section B.6 for discussion) and, therefore, the precision criteria would not apply. The analytical results for the Combined Effluent are usable as reported based on the review of the field duplicate precision.

Page B-18 March 1999

The first set of field duplicate sample results from the samples associated with the direct-push data (DP-EP-02 [33-37 ft] and DP-EP-02 [33-37 ft] DUP) had no detected analytes (analyzed for volatile organic analytes only as per the scope of work) for organics and, therefore, met all precision requirements. The analytical results for DP-EP-02 (33-37 ft) are usable as reported based on review of the field duplicate precision.

The following table shows the second set of field duplicate sample results from the direct-push samples:

Compound	Units	DP-EP-02 (33-37 ft)	DP-EP-02 (33-37 ft) DUP	RPD%						
1,1-Dichloroethane	μg/L	(<5U)	2Ј	22						
Methylene chloride	μg/L	<u>3</u> J	(<5U)	18						
NOTE: U = Not of	NOTE: U = Not detected. Sample quantitation limits are shown as (<u).< td=""></u).<>									
J = Estim	nated concent	ration below detection li	mit.							

All precision requirements were met for the field duplicate analyses; the results are usable as reported.

B.8 METHOD DETECTION LIMITS FOR SOLID AND AQUEOUS SAMPLES

Appendix B.1 provides the method detection limits for solid and aqueous samples. The method detection limit represents the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero and is determined from analysis of a sample for a given matrix.

Appendix B.1

Method Detection Limits for Solid and Aqueous Samples

Date: 8 9:08:03 AM

Matrix: WATER

Compound List: 8260B 5ML PURGE

5970-1

 MDL Study									

Katahdin Analytical Services

Dates of Analysis	Spike	Data Files		
JAN 14,1998	1 UG/L	10639-	10646	
JAN 21,1998	2 UG/L	10708-	10714	
FEB 04,1998	5 UG/L	10814-	10820	

Analyst: JCG

Reviewed and Approved by:

File:

Date: 020598

Compound	Spike	10639	10640	10641	10642	10643	10644	10646	AVG	STD DEV	MDL
1,1,1,2-TETRACHLOROETHANE	1.00	1.15	0.89	1.14	1.10	1.18	0.99	1.13	1.08	0.10	0.33
1,1,1-TRICHLOROETHANE	1.00	1.07	1.08	1,15	1.12	1.19	1.00	0.65	1.04	0.18	0.57
1,1,2,2-TETRACHLOROETHANE	2.00	2.67	2.48	2.24	2.46	2.28	2.36	2.62	2.44	0.16	0.51
1,1,2-TRICHLOROETHANE	1.00	1.14	1.22	1.18	1.06	1.08	0.96	1.18	1.12	0.09	0.28
1,1-DICHLOROETHANE	1.00	1.14	1.23	1.30	1.28	1.30	1.42	0.54	1.17	0.29	0.92
1,1-DICHLOROETHENE	1.00	0.82	0.57	0.98	0.92	1.00	1.00	1.10	0.91	0.17	0.55
1,1-DICHLOROPROPENE	1.00	1.25	0.51	1.09	1.17	1.38	0.98	1.00	1.05	0.28	0.87
1,2,3-TRICHLOROBENZENE	1.00	1.16	0.97	1.30	1.48	1.70	0.90	1.54	1.29	0.30	0.94
1,2,3-TRICHLOROPROPANE	2.00	- 2.63	2.43	2.22	1.96	2.38	2.29	2.26	2.31	0.21	0.65
1,2,4-TRICHLOROBENZENE	1.00	1.12	1.07	1.15	1.23	1.63	0.87	1.58	1.24	0.28	0.87
1,2,4-TRIMETHYLBENZENE	1.00	1.06	1.02	1.24	1.05	1.38	0.98	1.15	1.13	0.14	0.45
1,2-DIBROMO-3-CHLOROPROPANE	2.00	1.94	2.37	2.60	2.31	2.60	2.07	2.41	2.33	0.25	0.78
1,2-DIBROMOETHANE	1.00	1.07	1.05	1.17	1.13	0.85	1.21	0.80	1.04	0.16	0.49
1,2-DICHLOROBENZENE	1.00	1.14	1.08	1.30	1.03	1.44	1,17	1.35	1.22	0.15	0.47
1,2-DICHLOROETHANE	1.00	1.30	0.79	1.10	1.18	1.22	1.44	1.21	1.18	0.20	0.63
1,2-DICHLOROETHENE (CIS)	1.00	1.08	0.73	1.01	1.10	0.98	0.89	0.57	0.91	0.20	0.61
1,2-DICHLOROETHENE (TRANS)	1.00	1.19	0.75	1.00	1.22	1.36	1.18	1.13	1.12	0.19	0.61
1,2-DICHLOROPROPANE	1.00	1.58	1.49	1.31	1.49	1.48	1.37	1.21	1.42	0.13	0.40
1,3,5-TRICHLOROBENZENE	2.00	1.98	2.08	2.16	2.15	1.98	1.92	1.85	2.02	0.12	0.37
1,3,5-TRIMETHYLBENZENE	1.00	1,14	0.99	1.14	1.05	1.37	0.98	1.12	1.11	0.13	0.41
1,3-DICHLOROBENZENE	1.00	1.24	1.05	1.24	1.08	1.39	1.07	1.45	1.22	0.16	0.50
1,3-DICHLOROPROPANE	1.00	1.14	1.13	1.19	0.98	1.10	1.06	1.22	1.12	0.08	0.25
1,4-DICHLOROBENZENE	1.00	1.31	1.33	1.38	1.24	1.64	1.33	1.68	1.42	0.17	0.54
2,2-DICHLOROPROPANE	2.00	1.50	1.69	1.48	1.37	1.44	1.36	1.52	1.48	0.11	0.35
2-BUTANONE	5.00	7.40	7.34	5.58	5.58	6.92	5.70	6.43	6.42	0.82	2.56
2-CHLOROETHYLVINYLETHER	1.00	1.10	0.73	0.65	0.79	0.96	0.93	0.66	0.83	0.17	0.53
2-CHLOROTOLUENE	1.00	1.36	0.77	1.28	1.02	1.49	1.14	1.18	1.18	0.24	0.74
2-HEXANONE	2.00	3.30	3.00	3.62	3.09	2.64	2.84	3.30	3.11	0.33	1.03
4-CHLOROTOLUENE	1.00	1.11	1.03	1.27	1.35	1.38	1.33	1.23	1.24	0.13	0.41
4-METHYL-2-PENTANONE	1.00	2.18	1.68	1.73	1.63	1.88	1.31	1.38	1.68	0.29	0.93
ACETONE	5.00	9.37	6.91	6.67	6.37	7.83	6.22	6.02	7.06	1.18	3.71
ACROLEIN	5.00	7.51	8.21	7.74	7.79	10.37	10.99	9.54	8.88	1.41	4.43
ACRYLONITRILE	5.00	6.34	5.91	6.21	5.79	6.86	6.00	5.78	6.13	0.38	1.21
BENZENE	1.00	1.17	1.07	1.21	1.06	1.20	1.10	1.04	1.12	0.07	0.22

-Date: 1/15/98 9:08:03 AM

Matrix: WATER

Compound List: 8260B 5ML PURGE

5970-1

Dates of Analysis	Spike	Data Files		
JAN 14,1998	1 UG/L	10639- 10646		
JAN 21,1998	2 UG/L	10708- 10714		
FEB 04,1998	5 UG/L	10814- 10820		

Analyst: JCG

Reviewed and Approved by:

File:

Date: 020598

Compound	Spike	10639	10640	10641	10642	10643	10644	10646	AVG	STD DEV	MDL
BROMOBENZENE	1.00	0.97	0.93	1.21	0.97	1.34	1.23	1.07	1.10	0.16	0.50
BROMOCHLOROMETHANE	1.00	1.04	0.54	0.74	0.87	1.03	0.60	1.09	0.84	0.22	0.70
BROMODICHLOROMETHANE	1.00	1.20	0.52	1.11	1.10	1.15	1.16	1.27	1.07	0.25	0.79
BROMOFORM	1.00	1.03	1.02	1.07	0.91	1.02	1.21	1.18	1.06	0.10	0.32
BROMOMETHANE	1.00	1.20	0.86	1.06	0.93	1.05	1.21	1.02	1.05	0.13	0.40
CARBON DISULFIDE	1.00	1.20	1.17	1.01	1.22	1.34	1.22	1.04	1.17	0.11	0.36
CARBON TETRACHLORIDE	1.00	1.16	0.99	1.18	1.04	1.24	1.22	1.15	1.14	0.09	0.29
CHLOROBENZENE	1.00	1.01	1.05	1.10	1.04	1.20	1.07	1.15	1.09	0.07	0.21
CHLOROETHANE	1.00	1.46	1.13	0.87	0.65	0.89	0.94	1.21	1.02	0.27	0.84
CHLOROFORM	1.00	1.20	0.63	1.15	1.04	1.11	0.57	0.78	0.93	0.26	0.82
CHLOROMETHANE	2.00	2.67	1.97	2.55	2.41	2.05	2.35	1.58	2.23	0.38	1.19
CIS-1,3-DICHLOROPROPENE	1.00	1.22	1.01	1.30	1.02	1.00	1.08	1.08	1.10	0.12	0.36
DIBROMOCHLOROMETHANE	1.00	1.01	1.05	1.04	0.97	1.02	1.01	1.05	1.02	0.03	0.09
DIBROMOMETHANE	1.00	1.12	1.04	1.15	1.11	1.24	1.23	1.20	1.16	0.07	0.23
DICHLORODIFLUOROMETHANE	2.00	1.71	1.82	1.91	1.64	1.37	1.47	1.94	1.69	0.22	0.68
ETHYL METHACRYLATE	1.00	1.38	1.37	1.22	1.32	1.19	1.14	1.23	1.26	0.09	0.29
ETHYLBENZENE	1.00	1.20	1.12	1.12	1.22	1.36	1.15	1.24	1.20	0.08	0.27
FREON-113	2.00	1.62	1.63	1.57	1.56	1.37	1.32	1.54	1.52	0.12	0.38
HEXACHLOROBUTADIENE	1.00	1.11	1.01	1.36	1.30	1.78	1.11	1.65	1.33	0.29	0.91
ISOPROPYLBENZENE	1.00	1.06	1.00	1.14	1.02	1.27	0.97	1.04	1.07	0.10	0.32
M+P-XYLENE	2.00	2.24	2.21	2.36	1.94	2.94	2.30	2.27	2.32	0.30	0.95
METHYLENE CHLORIDE	2.00	3.47	4.40	4.38	4.27	4.21	3.88	4.53	4.16	0.37	1.16
MTBE	1.00	1.30	1.06	1.26	1.27	1.14	1.23	1.22	1.21	0.08	0.26
N-BUTYLBENZENE	1.00	1.07	0.95	1.23	1.13	1.55	0.93	1.23	1.16	0.21	0.66
N-PROPYLBENZENE	1.00	1.05	1.02	0.97	1.14	1.35	0.98	1.15	1.09	0.13	0.42
NAPHTHALENE	2.00	1.63	1.75	1.77	1.76	1.67	1.57	1.75	1.70	0.08	0.24
O-XYLENE	1.00	1.08	0.92	1.12	0.88	1.27	1.05	1.12	1.06	0.13	0.41
P-ISOPROPYLTOLUENE	1.00	1.05	0.82	1.11	1.02	1.34	0.51	1.13	1.00	0.26	0.83
SEC-BUTYLBENZENE	1.00	0.99	1.07	1.16	1.02	1.40	0.96	1.25	1.12	0.16	0.50
STYRENE	1.00	1,12	0.86	1.04	0.95	1.35	1.03 .	1.13	1.07	0.16	0.49
TERT-BUTYLBENZENE	1.00	0.95	0.94	1.09	1.01	1.23	0.96	0.98	1.02	0.10	0.33
TETRACHLOROETHENE	1.00	1.05	0.79	1.12	1.12	1.50	1.05	1.15	1.11	0.21	0.66
TETRAHYDOOFURAN	5.00	7.94	5.51	7.32	7.56	7.89	7.52	7.24	7.28	0.82	2.59
TOLUENE	1.00	1.22	1.09	1.12	09	0.98	1.13	1.06	1.10	0.07	0.23

Katahdin Analytical Services MDL Study

8 9:08:03 AM Date: 1 Matrix: VVXTER

Compound List: 8260B 5ML PURGE

5970-1

Dates of Analysis	Spike	Data Fil	es
JAN 14,1998	1 UG/L	10639-	10646
JAN 21,1998	2 UG/L	10708-	10714
FEB 04,1998	5 UG/L	10814-	10820

Analyst: JCG

Reviewed and Approved by:

File:

Date: 020598

Compound	Spike	10639	10640	10641	10642	10643	10644	10646	AVG	STD DEV	MDL
TRANS-1,3-DICHLOROPROPENE	1.00	1.31	1.05	1.07	1.06	0.99	1.08	0.96	1.07	0.11	0.36
TRICHLOROETHENE	1.00	1.24	0.93	1.07	1.14	1.26	1.24	1.11	1.14	0.12	0.37
TRICHLOROFLUOROMETHANE	1.00	1.22	0.56	1.26	1.31	1.30	1.35	1.36	1.19	0.28	0.89
VINYL ACETATE :	5.00	5.02	5.09	5.30	5.25	4.36	4.08	4.31	4.77	0.51	1.59
VINYL CHLORIDE	1.00	1.20	1.02	1.18	1.03	1.61	1.26	0.80	1.16	0.25	0.79

Katahdin Analytical Services
MDL Study

Date: 10/14/98 11:21:06 AM

Matrix: SOIL

Compound List: 8260 APPIX.

Instrument: 5972-S

Dates of Analysis Spike Data Files
101098 5

Analyst: JSS

Reviewed and Approved by:

Date:

File: S1A9SMDL

Compound	Spike	S1509	S1510	S1511	S1512	S1513	S1514	S1516	AVG	STD DEV	MDL
1,1,1,2-TETRACHLOROETHANE	5PPB	3.99	3.97	4.19	3.89	4.16	4.57	4.53	4.19	0.27	0.85
1,1,1-TRICHLOROETHANE	5PPB	4.46	4.17	4.55	4.15	4.39	4.57	4.69	4.43	0.20	0.64
1,1,2,2-TETRACHLOROETHANE	5PPB	4.24	3.86	4.47	4.24	4.85	5.16	4.84	4.52	0.45	1.41
1,1,2-TRICHLOROETHANE	5PPB	4.63	4.36	4.47	4.19	5.02	4.91	4.76	4.62	0.30	0.94
1,1-DICHLOROETHANE	5PPB	4.81	4.56	4.72	4.51	4.84	5.21	5.08	4.82	0.26	0.81
1,1-DICHLOROETHENE	5PPB	4.25	4.01	4.11	4.00	4.25	4.43	4.24	4.18	0.15	0.48
1,2,3-TRICHLOROPROPANE	5PPB	5.08	4.69	4.49	4.06	5.44	5.22	5.17	4.88	0.49	1.53
1,2-DIBROMO-3-CHLOROPROPANE	5PPB	3.45	3.15	3.31	4.09	3.00	3.81	4.67	3.64	0.59	1.85
1,2-DIBROMOETHANE	5PPB	4.18	3.83	4.08	4.01	4.19	4.54	4.14	4.14	0.22	0.68
1,2-DICHLOROETHANE	5PPB	4.78	4.25	4.38	4.13	4.58	4.85	4.82	4.54	0.29	0.92
1,2-DICHLOROETHENE (TRANS)	5PPB	4.24	4.00	4.09	3.98	4.24	4.41	4.23	4.17	0.15	0.48
1,2-DICHLOROPROPANE	5PPB	4.26	4.16	4.58	4.10	4.50	4.76	4.65	4.43	0.26	0.81
1,4-DIOXANE	200PPB	33.07	32.61	44.88	31.23	59.76	8.61	39.37	35.65	15.53	48.81
2-BUTANONE	5PPB	4.89	4.90	4.57	4.63	4.89	5.21	4.19	4.75	0.32	1.02
2-CHLOROETHYLVINYLETHER	5PPB	2.61	2.62	3.01	2.68	2.23	2.84	2.71	2.67	0.24	0.75
2-HEXANONE	5PPB	3.67	3.93	2.91	3.30	3.88	3.73	3.48	3.56	0.36	1.13
4-METHYL-2-PENTANONE	5PPB	6.16	5.54	6.09	5.56	6.01	6.45	6.01	5.97	0.33	1.02
ACETONE	5PPB	7.42	7.07	7.44	7.07	8.69	8.80	7.90	7.77	0.72	2.27
ACETONITRILE	100PPB	66.66	74.34	74.27	69.98	81.68	86.61	87.22	77.25	8.05	25.31
ACROLEIN	5PPB	8.06	6.87	7.94	8.47	4.51	8.94	5.05	7.12	1.72	5.42
ACRYLONITRILE	5PPB	5.82	5.10	4.24	4.18	4.05	4.62	4.34	4.62	0.63	1.99
ALLYL CHLORIDE	5PPB	4.86	4.60	5.32	4.96	5.60	5.12	5.55	5.14	0.37	1.16
BENZENE	. 5PPB	4.37	4.18	4.38	4.03	4.39	4.55	4.45	4.34	0.17	0.55
BROMODICHLOROMETHANE	5PPB	4.42	3.98	4.55	4.11	4.49	4.88	4.74	4.45	0.32	1.01
BROMOFORM	5PPB	3.58	3.45	3.62	3.54	4.35	4.31	4.52	3.91	0.46	1.44
BROMOMETHANE	5PPB	5.18	4.84	5.25	4.81	5.77	5.36	6.70	5.42	0.65	2.05
CARBON DISULFIDE	5PPB	5.22	4.94	5.17	4.77	5.01	5.35	5.28	5.11	0.21	0.65
CARBON TETRACHLORIDE	5PPB	4.55	4.08	4.48	4.11	4.41	4.85	4.60	4.44	0.27	0.86
CHLOROBENZENE	5PPB	4.34	4.06	4.29	4.11	4.31	4.55	4.41	4.30	0.17	0.53
CHLOROETHANE	5PPB	5.33	5.11	5.24	4.82	5.22	5.55	5.76	5.29	0.30	0.95
CHLOROFORM	5PPB	4.98	4.70	5.09	5.12	5.37	5.83	5.54	5.23	0.38	1.18
CHLOROMETHANE	5PPB	4.65	4.59	4.72	4.27	4.61	5.03	4.85	4.67	0.24	0.74
CHLOROPRENE	5PPB	3.68	3.60	3.52	3.37	3.48	3.87	3.60	3.59	0.16	0.50
CIS-1,3-DICHEROPENE	5PPB	3.82	3.86	3.94		3.96	3.86	4.04	3.85	0.18	0.57

Katahdin Analytical Servic s MDL Study

Date: 10/14/08 11:21:06 AM

Matrix: So

Compound List: 8260 APPIX.

Instrument: 5972-S

tahdin Analytical Services

L Study

Dates f Analysis	Spike	Data Files
1010	98 5	

Analyst: JSS

Reviewed and Approved by:

Date:

File: S1A9SMDL

Compound	Spike	S1509	S1510	S1511	S1512	S1513	S1514	S1516	AVG	STD DEV	MDL
DIBROMOCHLOROMETHANE	5PPB	3.98	4.22	4.49	3.92	4.46	4.71	4.69	4.35	0.32	1.01
DIBROMOMETHANE	5PPB	4.48	4.18	4.39	4.21	4.58	4.62	4.77	4.46	0.32	0.68
DICHLORODIFLUOROMETHANE	5PPB	6.39	5.87	6.14	5.46	6.02	6.67	6.44	6.14	0.40	1.27
ETHYL METHACRYLATE	5PPB	2.96	3.44	3.40	3.09	3.59	3.87	3.54	3.41	0.40	
ETHYLBENZENE	5PPB	3.62	3.45	3.51	3.28	3.39	3.58	3.67	3.50		0.97
SOBUTYL ALCOHOL	200PPB	37.24	46.55	44.62	41.63	45.51	45.60	38.79	42.85	0.14	0.43
M+P-XYLENE	5PPB	6.89	6.59	6.85	6.55	6.86	7.49	6.77		3.67	11.5
METHACRYLONITRILE	100PPB	52.87	50.08	50.44	48.62	55.42	56.07		6.86	0.31	0.97
METHYL IODIDE	5PPB	4.60	4.27	4.94	4.12	4.66		54.48	52.57	2.90	9.11
METHYL METHACRYLATE	5PPB	5.25	4.90	5.26	4.12		4.88	4.74	4.60	0.30	0.96
METHYLENE CHLORIDE	5PPB	7.61	8.29	8.08	6.69	4.99	5.80	4.65	5.11	0.37	1.17
D-XYLENE	5PPB	3.15	3.19	3.12	2.84	6.92	8.32	8.32	7.75	0.69	2.18
PENTACHLOROETHANE	5PPB	4.58	4.94	4.59		3.05	3.20	2.83	3.05	0.16	0.50
PROPIONITRILE	100PPB	48.28	47.24		4.94	3.67	4.19	5.46	4.62	0.58	1.81
STYRENE	5PPB	3.27	3.14	50.93	46.42	55.80	60.26	55.37	52.04	5.21	16.3
ETRACHLOROETHENE	5PPB	4.02	3.60	3.18	3.01	2.90	3.46	3.17	3.16	0.18	0.56
TOLUENE	5PPB	4.02		4.14	3.36	4.33	4.38	4.01	3.98	0.37	1.18
FRANS-1,3-DICHLOROPROPENE	5PPB	3.62	3.98	4.44	4.11	4.23	4.46	4.36	4.27	0.18	0.55
RANS-1,4-DICHLORO-2-BUTENE	5PPB		4.46	4.46	4.05	4.50	4.74	4.56	4.34	0.38	1.19
RICHLOROETHENE		3.16	2.58	2.17	3.56	1.54	1.45	1.56	2.29	0.84	2.65
RICHLOROFLUOROMETHANE	5PPB	4.34	3.91	4.21	3.75	4.26	4.48	4.20	4.16	0.25	0.79
INYL ACETATE	5PPB	5.16	4.69	5.04	4.72	4.90	5.32	5.13	4.99	0.23	0.74
	5PPB	4.14	3.83	3.76	3.70	3.43	4.01	3.92	3.83	0.23	0.72
/INYL CHLORIDE	5PPB	4.83	4.66	4.77	4.56	4.76	5.02	5.03	4.80	0.17	0.55

Katahdin Analytical Services, Inc. Metals Section

Instrument Detection Limits - 4th Quarter 1998

ELEMENT	IDL (ug/L)	INSTRUMENT	METHOD
Aluminum	23.02	TJA Trace	ICP
Antimony	2.05	TJA Trace	ICP
Arsenic	1.81	TJA Trace	ICP
Barium	0.14	TJA Trace	ICP
Beryllium	0.18	TJA Trace	ICP
Boron	1.00	TJA Trace	ICP
Cadmium	0.19	TJA Trace	ICP
Calcium	7.86	TJA Trace	ICP
Chromium	0.46	TJA Trace	ICP
Cobalt	0.44	TJA Trace	ICP
Copper	0.64	TJA Trace	ICP
lron '	10.46	TJA Trace	ICP
Lead	0.91	TJA Trace	ICP
Magnesium	5.39	TJA Trace	ICP
Manganese	0.13	TJA Trace	ICP
Mercury	0.030	Leeman	CVAA
Molybdenum	0.98	TJA Trace	ICP
Nickel	0.76	TJA Trace	ICP
Potassium	326.14	TJA 61	ICP
Selenium	1.92	TJA Trace	ICP
Silicon	27.51	TJA 61	ICP
Silver	0.99	TJA Trace	ICP
Sodium	17.14	TJA 61	ICP
Strontium	0.03	TJA Trace	ICP
Thallium	4.50	TJA Trace	ICP
Tin	2.07	TJA Trace	ICP
Titanium	0.24	TJA Trace	ICP
Vanadium	0.63	TJA Trace	ICP
Zinc	0.32	TJA Trace	ICP

Method Detection Limit Study

Method:

6010B

Matrix:

AQUEOUS

Sample Prep. Method: Analyst:

3010A EAM

Sample Weight or Volume:

N.A. Spike Conc. and Amount: VARIOUS

Date:

1/15/98

Instrument I.D.:

TJA Truce ICP

Contaminant	Test Conc.		·	MDL I	Replicates (ug	/L)			Mean Conc.	Standard Deviation	Calculated MDL	Reporti
	··(ug/L)	1	2	3	4	5	6	7	(ug/L)	(ug/L)	(ug/L)	Limit (ug/L)
Aluminum	60	90.29	84.55	56.07	88.57	80.24	85.14	84.08	81.28		36.39	
Antimony	6	6.46	6.65	6.41	6.04	5.54	6.62	6.81	6.36			
Arsenic	6	5.33	5.3	6.56	5.67	6.38	5.89	6.8	5.99	0.60		
Barium	0.4	2.23	2.16	2.32	1.34	1.93	2.72	2.57	2.18		1.88	
Beryllium	0.5	0.48	0.41	0.54	0.49	0.59	0.56	0.5	0.51	0.45	1.43	
Boron	3	9.39	9.69	7.44	7.53	6.11	14.91	7.17		0.06	0.19	
Cadmium	0.6	0.76	0.71	0.79	0.78	0.65	0.74	0.78	8.89	2.94	9.23	
Calcium	20	35.41	28.94	34.7	38.67	36.15	34.29		0.74	0.05	0.16	
Chromium	1.5	1.9	1.69	1.71	2.01	1.82		44.9	36.15	4.85	15.24	
Cobalt	1.5	1.25	1.43	1.19	1.71	1.35	1.64	1.88	1.81	0.13	0.42	
Copper	1.5	1.84	1.59	1.7	2.01		1.28	1.73	1.42	0.22	0.69	
Iron	30	48.03	40.7	41.65		2.55	1.66	2.21	1.94	0.35	1.09	
Lead	3	4.02	3.87		47.84	46.17	40.23	38.74	43.34	3.89	12.23	
Magnesium	15			3.91	3.67	3.84	4.17	4.84	4.05	0.38	1.20	
	1	24.48	18.42	19.13	20.22	20.4	17.41	21.1	20.17	2.28	7.17	
Manganese	0.4	0.63	0.55	0.55	0.69	0.71	0.59	0.71	0.63	0.07	0.22	•,
Molybdenum	3	3.38	3.28	2.13	3.14	3.07	3.16	3.18	3.05	0.42	1.31	1
Nickel	2	2.63	2.22	2.51	2.66	2.79	2.01	2.6	2.49	0.28	0.86	:

Method Detection Limit Study

Method:

6010B

Matrix:

AQUEOUS

Sample Prep. Method:

3010A

Sample Weight or Volume:

N.A.

Analyst: Date:

EAM 1/15/98

Sı

Spike Conc. and Amount: VARIOUS

Instrument I.D.:

TJA Trace ICP

Contaminant	Test Conc.			MDL	Replicates (ug/L)			Mean Conc.	Standard Deviation	Calculated MDL	Reporting Limit
	· (ug/L)	1	2	3	4	5	6	7	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Selenium	6	7.34	6.36	6.26	6.6	6.68	7.28	6.71	6.75			10
Silver	3	1.98	2.55	2.57	2.66	2.79	2.56	2.67				
Strontium	0.1	0.12	0.11	0.12	0.14	0.12	0.12	0.15			0.04	
Thallium	10	8.63	10.17	11.38	10.23	10.66	11.18		10.41	0.90	2.84	
Tin	6	5.35	5.79	5.26	5.9	6.24	7.11	5.98	5.95		1.94	
Titanium	0.8	1.13	1.01	1.17	0.97	0.99	1.03	1.11	1.06		0.24	15
Vanadium	2	2.34	2.04	2.32	2.15	2.13	2.3	2.41	2.24	0.13	0.42	25
Zinc	1	3.84	3.31	4.23	4.84	5.34	5.6	5.97	4.73		3.07	25

Method Detection Limit Study

Method:

6010B

Matrix:

AQUEOUS

Sample Prep. Method:

3010A

Sample Weight or Volume:

N.A.

Analyst: Date:

EAM 1/16/98

Spike Conc. and Amount: VARIOUS

TJA 61 ICP

Instrument I.D.:

Contaminant	Test Conc.			MDL	. Replicates (u	g/L)			Mean Conc.	Standard Deviation	Calculated MDL	Reporting Limit
	(ug/L)	1	2	3	4	5	6	. 7	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Aluminum	40	55.78	49.58	58.84	52.62	54.76	55.49	49.4	53.78			
Barium	1.5	4.97	4.99	3.87	3.12	4.03	3.09	5.47	4.22	0.95		
Beryllium	0.6	0.74	0.86	0.81	0.79	0.86	0.81	0.76	0.80		0.14	
Calcium	50	58.08	50.09	58.84	56.81	50.67	48.74	54.28	53.93	4.12	12.96	50
Chromium	8	8.99	7.98	9.2	9.09	10.24	8.47	8.06	8.86	0.78	2.45	
Cobalt	8	9.14	8.43	8.95	9.7	9.46	8.7	7.51	8.84	0.73	2.29	1:
Copper	5	5:07	4.24	6.58	4.09	5.28	4.62	2.78	4.67	1.17	3.69	
Iron	10	21.12	23.02	26.44	21.53	22.73	21.89	29.27	23.71	3.02	9.48	2: 2:
Magnesium	40	50.07	46.87	46.98	49.06	43.1	43.61	41.81	45.93	3.14	9.88	2. 5(
Manganese	3	3.58	3.43	3.91	3.62	3.41	3.41	3.18	3.51	0.23	0.72	
Nickel	25	33.14	30.62	29.15	31.43	29.07	28.14	30.32	30.27	1.68	5.28	40
Potassium	1200	1127.3	1075.5	1215.7	1251.8	1239.7	1100.2	820.61	1118.69	148.83	467.78	1000
Silicon	50	133.3	88.99	128.9	89.57	80.76	76.44	100.2	99.74	22.73	71.43	
Silver	10	10.66	9	10.6	9.75	10.32	9.64	8.78	9.82	0.75	·	200
Sodium	50	121.23	114.83	134.48	109.3	104.43	123.21	113.59	117.30	9.96	2.35	15
Vanadium	8	8.55	9.81	8.51	9.87	10.38	8.55	9.01	9.24	0.77	31.30	100
Zinc	4	7.01	6.21	8.98	6.82	6.36	7.95	9.4	7.53	1.27	2.42 3.99	25 25

KATAHDIN ANALYTICAL SERVICES, INC. **METALS ANALYSIS SECTION Method Detection Limit Study**

Analysis Method:

7470A

Matrix:

Aqueous

Prep. Method:

7470A

Sample Weight or Volume:

N.A.

Analyst:

GFB

Spike Conc. and Amount: 0.080 ug/L

Date:

09/19/98

Instrument I.D.:

Leeman PS200

ANALYTE	TEST CONC:			MDL	REPLICATES	(ug/L)			MEAN CONC.	STANDARD DEVIATION	CALC.	REPORTING LIMIT
	(ug/L)	1	2	3	4	5	6	7	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Mercury	0.080	0.054	0.062	0.066	0.059	0.061	0.071	0.062	0.0621	0.0053	0.0168	0.20

KATAHDIN ANALYTICAL SERVICES, INC. - ELEMENTS SECTION ICP Method Det ction Limit (MDL) Study in Sand Matrix - Methods 3050A/6010A

Instrument: Thermo Jarrell Ash Trace ICP

ELEMENT	Alumin	ium	Antimo	iny	Arsen	ic	Bari	um	Beryll	ium
Meth d No.	60 ⁻	10	60 ⁻	10	60	10		3010	60	010
Linear Range							<u> </u>	0.10		710
Analysis Date	01/16	6/98	01/16	/98	01/16	5/98	01/	16/98	01/1	6/98
Prep. Diluti n Fctr. (DF)	1	1	1	1	1	1		1 1	1	1
Standard True Value	60.00	0	6.00	0	6.00	О	0.40	0	0.50	o
MEASURED CONC.										
Replicate # 1	710.92	528.27	6.10	1.02	4.91	0.13	6.33	4.33	0.58	0.05
Replicate # 2	811.66	548.9	4.60	-0.58	4.07	-1.11	2.96		~~~	0.05
Replicate # 3	600.30	528.34	4.60	-0.26	3.69	-1.36	2.18		2001	0.15
Replicate # 4	700.63	462.3	15.76	-0.85	5.67	-0.67	2.37		939	0.03
Replicate # 5	1182.80	1101	5.48	0.41	4.66	-0.84	5.51			0.18
Replicate # 6	1066.10	707.99	4.75	0.83	5.31	-0.46	4.58		0.51	0.06
Replicate # 7	566.01	429.05	4.09	-0.12	4.43	-1.38	3.32		0000	0.11
Replicate # 8										
Replicate # 9										
Replicate #10										
Mean	805.489	615.121	6.483	0.064	4.677	-0.813	3.893	4.267	0.527	0.090
Recovery (%)	317.3%	N.A.	107.0%	N.A.	91.5%	N.A.	-93.6%	6 N.A.	87.4%	N.A.
Standard Deviation (SD)	234.418	231.711	4.144	0.708	0.689	0.539	1.606	2.575	0.042	0.057
Degrees of Freedom	6	6	6	6	6	6	6	6	6	6
Student's T-value (t)	3.143	3.143	3.143	3.143	3.143	3.143	3.143	3.143	3.143	3.143
MDL(txSDxDF)	736.776	728.267	13.025	2.226	2.164	1.694	5.048	8.095	0.133	0.181

KATAHDIN ANALYTICAL SERVICES, INC. - ELEMENTS SECTION ICP Method Detection Limit (MDL) Study in Sand Matrix - Methods 3050A/6010A

Instrument: Thermo Jarrell Ash Trace ICP

ELEMENT	Bor	on	Cadm	lium	Calc	ium	Chro	mlum	Co	balt
Method No.	601	10	601	0	60	10	60	110	60)10
Linear Range								710	- 00	710
Analysis Date	01/16	6/98	01/16	/98	01/16	5/98	01/1	6/98	01/1	6/98
Prep. Diluti n Fctr. (DF)	1	1	11	1	1	1	1	1	01/1	0/90
Standard True Value	3.00	ō	0.60	0	20.00	0	1.50		1.50	
MEASURED CONC.							1.50	<u> </u>	1.50	
Replicate # 1	5.85	2.32	0.72	0.08	711.17	623.72	3.58	1.64	1.06	-0.33
Replicate # 2	6.86	2.28	0.71	0.03	684.27	544.62	4.08	1.23	WA	-0.63
Replicate # 3	7.66	0.72	0.73	0.13	603.90	576.11	3.15	2.27	200	-0.54
Replicate # 4	5.07	2.29	0.63	0	684.19	523.25	4.51	1.79	0.78	-0.54
Replicate # 5	9.40	4.62	0.76	0.08	1088.30	1008.6	<u> </u>	2.74	1.01	-0.34
Replicate # 6	6.04	1.89	0.77	0.06	907.85	745.76	3.54	1.64	1.08	-0.54
Replicate # 7	4.43	0.65	0.67	0.13	542.75	544.57	4.33	1.11	**	-0.63
Replicate # 8									5:10	0.00
Replicate # 9										
Replicate #10										
Mean	6.473	2.110	0.713	0.073	746.061	652.376	3.913	1.774	0.906	-0.487
Recovery (%)	145.4%	N.A.	106.7%	N.A.	468.4%	N.A.	142.6%	N.A.	92.9%	N.A.
Standard Deviation (SD)	1.676	1.324	0.049	0.048	188.729	174.242	0.495	0.570	0.164	0.129
Degrees of Freedom	6	6	6	6	6	6	6	6	6	6
Student's T-value (t)	3.143	3.143	3.143	3.143	3.143	3.143	3.143	3.143	3.143	3.143
MDL(txSDxDF)	5.266	4.161	0.155	0.152	593.175	547.641	1.557	1.793	0.516	0.406

KATAHDIN ANALYTICAL SERVICES, INC. - ELEMENTS SECTION ICP Method Det ction Limit (MDL) Study in Sand Matrix - M thods 3050A/6010A

Instrument: Thermo Jarrell Ash Trace ICP

ELEMENT	Copper		ELEMENT Copper			NT Copper Iron			Lei	ad	Magne	eium	Manganese		
Method N .	6010		6010		60	10	60	10	6010						
Linear Range								10	- 60	10					
Analysis Date	01/16	/98	01/16	6/98	01/16	6/98	01/16	i/98	01/16/98						
Prep. Diluti n Fctr. (DF)	1	1	1	1	11	1	11	1	11	1					
Standard True Value	1.50	0	30.00	0	3.00	0	15.00	'	0.40	<u></u>					
MEASURED CONC.							10:00		0.40						
Replicate # 1	3.35	1.78	853.28	690.55	5.87	1.12	157.10	125.55	48.88	43.29					
Replicate # 2	2.95	1.51	787.13	645.19		1.58	172.80	121.91	38.11	35.64					
Replicate # 3	3.17	2.94	714.53	743.63	4.65	2.18	145.59	131.4	37.56	38.14					
Replicate # 4	3.05	2.05	856.58	529.57	6.11	1.3	146.46	113.29	45.13	28.7					
Replicate # 5	3.63	2.44	1314.00	1355.4	4.77	7.73	259.80	249.92	78.51	79.88					
Replicate # 6	2.85	1.56	1079.40	980.68	4.35	1.64	210.85	165.27	59.49	60.74					
Replicate # 7	3.10	2.42	664.17	483.74	5.20	1.77	130.15	97.12	34.02	26.39					
Replicate # 8															
Replicate # 9	,														
Replicate #10															
M an	3.157	2.100	895.584	775.537	5.070	2.474	174.679	143.494	48.814	44.683					
Recovery (%)	70.5%	N.A.	400.2%	N.A.	86.5%	N.A.	207.9%	N.A.	1032.9%	N.A.					
Standard Deviation (SD)	0.262	0.527	227.401	302.545	0.684	2.342	45.629	51.312	15.650	19.206					
Degrees of Freedom	6	6	6	6	6	6	6	6	6	6					
Student's T-value (t)	3.143	3.143	3.143	3.143	3.143	3.143	3.143	3.143	3.143	3.143					
MDL(txSDxDF)	0.825	1.657	714.720	950.899	2.149	7.361	143.411	161.274	49.187	60.365					

KATAHDIN ANALYTICAL SERVICES, INC. - ELEMENTS SECTION

ICP Method Det ction Limit (MDL) Study in Sand Matrix - Methods 3050A/6010A

Instrument: Thermo Jarrell Ash Trace ICP

ELEMENT	Molybd	CONTROL SERVICE	Nic			ssium		74007 740000000000000000000000000000000	88 888888888888888888		
ininini (Film 11)	maiybu	CHUIII	17161	vei	FULA	SSIUIN	26	enium	Sil	Silicon	
Meth d No.	6010		6010		6010		6010		6010		
Linear Range											
Analysis Date	01/16	/98	01/16	/98			01/	16/98			
Prep. Diluti n Fctr. (DF) 🗌	1	1	1	1	1	1		1 1	1	1	
Standard True Value	3.00	0	2.00	0	1.00	0	6.00) 0	1.00	1 (
MEASURED CONC.										<u> </u>	
Replicate # 1	4.30	1.14	3.20	1.25			6.31	0.12			
Replicate # 2	3.46	0.55	3.15	1.03			6.60	0.45			
Replicate # 3	3.23	0.43	3.39	1.38			6.40	0.96			
Replicate # 4	3.52	0.43	3.25	1.25			5.36	1.51			
R plicate # 5	3.16	0.62	3.83	1.62			6.39	1.25			
Replicate # 6	3.15	0.73	3.33	1.25			4.07	0.41			
Replicate # 7	3.11	-0.03	3.40	1.43			6.37	2.13			
Replicate # 8											
Replicate # 9											
Replicate #10											
M an	3.419	0.553	3.364	1.316	#DIV/0!	#DIV/0!	5.929	0.976	#DIV/0!	#DIV/0!	
Recovery (%)	95.5%	N.A.	102.4%	N.A.	#DIV/0!	N.A.	82.5%	6 N.A.	#DIV/0!	N.A.	
Standard Deviation (SD)	0.420	0.354	0.226	0.185	#DIV/0!	#DIV/0!	0.913	0.710	#DIV/0!	#DIV/0!	
Degrees of Freedom	6	6	6	6	-1	-1	6	6	-1	-1	
Student's T-value (t)	3.143	3.143	3.143	3.143	ERR	ERR	3.143	3.143	ERR	ERR	
MDL(txSDxDF)	1.320	1.112	0.710	0.580	#DIV/0!	#DIV/0!	2.870	2.231	#DIV/01	#DIV/0!	

KATAHDIN ANALYTICAL SERVICES, INC. - ELEMENTS SECTION ICP Method Det ction Limit (MDL) Study in Sand Matrix - Methods 3050A/6010A

Instrument: Thermo Jarrell Ash Trace ICP

ELEMENT	Sih	/er	So	Sodium		Stron	tium		Thailium			TI	Tin	
Method No.	` 60°	10	6	010	-	6010			6010			60	10	
Lin ar Range					╢╴		10	-	001		∭-	60	10	
Analysis Date	01/16	6/98			╢╴	01/16	/98	-	01/16	/08	∭	01/16	100	
Prep. Diluti n Fctr. (DF)	1	1	1	1	╢╴	1	1	-	11	190	∭-	01/10	196	
Standard True Value	3.00	0		0	181	0.10	0	-	10.00		∭	6.00		
MEASURED CONC.					1	0.10		<u> </u>	10.00		⊪ -	6.00		
Replicate # 1	2.92	-0.01				2.28	1.6		8.42	-4.6		28.38	21.94	
Replicate # 2	2.57	-0.13				2.14	1.5		6.54	-3.29		27.68	20.89	
Replicate # 3	2.72	0.28		†		1.67	1.53	***	2.04	-5.51	73.70	26.61	22.67	
Replicate # 4	2.59	-0.03				2.01	1.35		5.23	-3.5	2000	27.08	21.43	
Replicate # 5	2.76	0.1				3.20	3.13		5.16	-5.79		28.05	19.99	
Replicate # 6	2.60	-0.14				3.09	1.91	8 <u> </u>	6.32	-3.78	0000	26.71	21.38	
Replicate # 7	3.98	-0.3				1.67	1.31	-	4.72	-3.38		26.55	20.51	
Replicate # 8										0.00		20.00	20.51	
Replicate # 9											₩-			
Replicate #10											<u> </u>			
Mean	2.877	-0.033	#DIV/0!	#DIV/0!		2.294	1.761		5.490	-4.207	-	27.294	21.259	
R covery (%)	97.0%	N.A.	#DIV/0!	N.A.		532.9%	N.A.		97.0%	N.A.		100.6%	N.A.	
Standard Deviation (SD)	0.502	0.186	#DIV/0!	#DIV/0!		0.624	0.635		1.960	1.085		0.743	0.895	
Degre s of Freedom	6	6	-1	-1		6	6		6	6		6	6	
Student's T-value (t)	3.143	3.143	ERR	ERR		3.143	3.143		3.143	3.143		3.143	3.143	
MDL(txSDxDF)	1.577	0.586	#DIV/01	#DIV/0!		1.962	1.994	1	6.160	3.411		2.334	2.813	

KATAHDIN ANALYTICAL SERVICES, INC. - ELEMENTS SECTION ICP Method D t ction Limit (MDL) Study in Sand Matrix - Methods 3050A/6010A

Instrument: The rmo Jarrell Ash Trace ICP

ELEMENT	Titan	ilum	Vanadium Zinc							
Method N .	60	10	60	6010)10	6	010		5010
Linear Range							<u>_</u>	010		5010
Analysis Date	01/16	6/98	01/10	6/98	01/1	6/98				
Prep. Dilution Fctr. (DF)	1	1	1	1	1	1	1	1		1 1
Standard True Value	0.80	0	2.00	0	1.00	0		0		'
MEASURED CONC.										┪
Replicate # 1	487.30	432.39	3.74	1.36	3.14	1.15				
Replicate # 2	340.31	321.04	4.05	0.98	3.01	1.49				
Replicate # 3	379.56	378.97	3.34	1.5	2.01	3.45		<u> </u>		
Replicate # 4	474.85	322.64	3.77	1.27	4.39	2.16				
Replicate # 5	538.16	535.47	5.01	2.83	12.56	4.05				
Replicate # 6	437.67	496.45	4.21	1.85	3.54	3.12				
Replicate # 7	343.06	366.16	3.61	1.07	3.73	1.78				
Replicate # 8										
Replicate # 9										
Replicate #10										
Mean	428.701	407.589	3.961	1.551	4.626	2.457	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/01
Recovery (%)	2639.1%	N.A.	120.5%	N.A.	216.9%	N.A.	#DIV/0!	N.A.	#DIV/0!	N.A.
Standard Deviation (SD)	76.581	83.773	0.542	0.633	3.574	1.092	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Degrees of Freedom	6	6	6	6	6	6	-1	-1	· -1	-1
Student's T-value (t)	3.143	3.143	3.143	3.143	3.143	3.143	ERR	ERR	ERR	ERR
MDL(txSDxDF)	240.693	263.298	1.704	1.988	11.234	3.432	#DIV/0!	#DIV/01	#DIV/0!	#DIV/0!

KATAHDIN ANALYTICAL SERVICES, INC. - METALS ANALYSIS SECTION **Method Detection Limit Study**

Analysis Method:

7471A

Matrix:

Soil

Prep. Method:

7471A

Sample Weight or Volume:

0.60 g

Analyst:

DPD

Spike Conc. and Amount: 0.080 ug/L

Date:

01/07/98

Instrument I.D.: Leeman PS200

ANALYTE	TEST CONC.			MDL F	REPLICATES	MEAN	STANDARD		REPORTING			
	(ug/L)	1	2	3	4	5	6	7	CONC. (ug/L)	DEVIATION	MDL	LIMIT
Mercury	0.080	0.080	0.072	0.083	0.082	0.066	0.058	0.074	0.0736	(ug/L) 0.0092	(ug/L) 0.0288	(ug/L) 0.20